Unlabelled: An Arabidopsis β-glucosidase, AtBG1 is known to hydrolyze glucose-conjugated, biologically inactive abscisic acid (ABA) to produce active ABA, which increases the level of ABA in plants. Since an increase of ABA in plants confers tolerance against abiotic stress such as drought, we introduced the pCAMBIA3301 vector harboring the AtBG1 gene into creeping bentgrass through Agrobacterium-mediated transformation. After transformation, putative transgenic plants were selected using the BASTA resistance assay at a concentration of 0.8%. Genomic integration of the AtBG1 gene was confirmed by genomic PCR and Southern blot analysis, and gene expression was validated by Northern blot and Western blot analyses. Interestingly, the transgenic bentgrass plants overexpressing AtBG1 had a dwarf phenotype with reduced growth rates when compared to wild-type creeping bentgrass. In addition, the transgenic plants accumulated higher ABA levels and displayed enhanced drought tolerance. These results suggest that the expression of AtBG1 in plants induces the accumulation of higher ABA levels, which results in the formation of dwarf creeping bentgrass and enhances the survival in water-limiting environments.
Key Message: We used an Arabidopsis β-glucosidase AtBG1 to engineer a crop with elevated active ABA levels, and developed transgenic creeping bentgrass with enhanced drought tolerance and dwarf phenotype.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-012-1280-6 | DOI Listing |
Protoplasma
January 2025
Department of Turf Science and Engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, 611130, China.
Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.
View Article and Find Full Text PDFMar Drugs
November 2024
Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.
This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.
View Article and Find Full Text PDFJ Nematol
March 2024
Department of Nematology, University of California Riverside, 3401 Watkins Drive, Riverside, CA 92521.
J Proteomics
January 2025
Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:
Phytopathology
November 2024
Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI, U.S.A.
Dollar spot is a destructive foliar disease of amenity turfgrass caused by spp. fungi, mainly , on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as ; however, the role of OA in the pathogenic development of remains unclear due to its recalcitrance to genetic manipulation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!