Unlabelled: An Arabidopsis β-glucosidase, AtBG1 is known to hydrolyze glucose-conjugated, biologically inactive abscisic acid (ABA) to produce active ABA, which increases the level of ABA in plants. Since an increase of ABA in plants confers tolerance against abiotic stress such as drought, we introduced the pCAMBIA3301 vector harboring the AtBG1 gene into creeping bentgrass through Agrobacterium-mediated transformation. After transformation, putative transgenic plants were selected using the BASTA resistance assay at a concentration of 0.8%. Genomic integration of the AtBG1 gene was confirmed by genomic PCR and Southern blot analysis, and gene expression was validated by Northern blot and Western blot analyses. Interestingly, the transgenic bentgrass plants overexpressing AtBG1 had a dwarf phenotype with reduced growth rates when compared to wild-type creeping bentgrass. In addition, the transgenic plants accumulated higher ABA levels and displayed enhanced drought tolerance. These results suggest that the expression of AtBG1 in plants induces the accumulation of higher ABA levels, which results in the formation of dwarf creeping bentgrass and enhances the survival in water-limiting environments.

Key Message: We used an Arabidopsis β-glucosidase AtBG1 to engineer a crop with elevated active ABA levels, and developed transgenic creeping bentgrass with enhanced drought tolerance and dwarf phenotype.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00299-012-1280-6DOI Listing

Publication Analysis

Top Keywords

creeping bentgrass
20
arabidopsis β-glucosidase
12
dwarf phenotype
12
aba levels
12
β-glucosidase atbg1
8
active aba
8
aba plants
8
atbg1 gene
8
transgenic plants
8
higher aba
8

Similar Publications

Creeping bentgrass (Agrostis stolonifera) is a cool-season perennial turfgrass and is frequently utilized in high-quality turf areas. However, a poor to moderate resistance to heat stress limits its promotion and utilization in transitional and worm climate zones. The objectives of the study were to assess the heat tolerance of 18 creeping bentgrass genotypes in the field and to further uncover differential mechanisms of heat tolerance between heat-tolerant and heat-sensitive genotypes.

View Article and Find Full Text PDF

Exploring sp. M21F004 for Biocontrol of Bacterial and Fungal Phytopathogens.

Mar Drugs

November 2024

Department of Agricultural Chemistry, Institute of Environmentally Friendly Agriculture, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea.

This study explores the biocontrol potential of sp. M21F004, a lactic acid bacteria (LAB) isolated from marine environments, against several bacterial and fungal phytopathogens. Out of 50 marine bacterial isolates, sp.

View Article and Find Full Text PDF
Article Synopsis
  • - Root-knot nematodes were identified as the likely cause of serious decline in creeping bentgrass putting greens at a golf course in Indian Wells, California, showing symptoms like yellowing and stunted growth.
  • - Morphological and genetic analysis confirmed the presence of the nematodes, with greenhouse trials revealing that many monocot plants could host them, but dicots did not support reproduction.
  • - Temperature studies showed that the nematode's life cycle thrives between 17-35 °C, but in greenhouse conditions, even high levels of nematode presence did not significantly harm the bentgrass, suggesting other factors may be involved in the putting greens' damage.
View Article and Find Full Text PDF

Dehydration priming remodels protein abundance and phosphorylation level regulating tolerance to subsequent dehydration or salt stress in creeping bentgrass.

J Proteomics

January 2025

Department of Turf Science and engineering, College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu 611130, China. Electronic address:

Article Synopsis
  • Dehydration priming (DP) creates a form of stress memory that enhances plants' abilities to adapt to future dehydration and salt stresses, but the specific molecular mechanisms behind this process remain unclear.
  • This study focused on identifying proteins, their phosphorylation levels, and metabolic pathways involved in DP-induced tolerance to dehydration and salt in the grass species Agrostis stolonifera.
  • Findings revealed that DP affects various proteins and phosphorylation sites differently under dehydration and salt conditions, highlighting distinct metabolic pathways and post-translational modifications that contribute to the plant's stress adaptability.
View Article and Find Full Text PDF

Dollar spot is a destructive foliar disease of amenity turfgrass caused by spp. fungi, mainly , on the Northern United States region's cool-season grass. Oxalic acid (OA) is an important pathogenicity factor in related fungal plant pathogens such as ; however, the role of OA in the pathogenic development of remains unclear due to its recalcitrance to genetic manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!