Background: To study intraocular pressure (IOP) alteration in healthy individuals following a rapid effortless increase in altitude from 1900 m above sea level (ASL) to 3740 m ASL.
Methods: Intraocular pressure, blood pressure, pulse rate, and arterial oxygen tension were determined in both eyes of healthy volunteers at the lower altitude. Participants were taken to a higher altitude of 3740 m ASL (1840-m altitude gain) via gondola lift, which took 30 minutes. All measurements were repeated at the higher altitude. Pearson and Spearman correlation analysis was conducted to assess the correlations among the variables. A paired t-test and linear regression were also used to compare IOP before and after ascending. The accepted level of significance for all tests was p <0.05.
Results: Fifty-four healthy volunteers participated in the study. Four eyes of three subjects with IOP higher than 21 mmHg were excluded. Intraocular pressure ± SD (range) decreased from 14.9 ± 2.6 mmHg (9-21 mmHg) to 14.3 ± 2.4 mmHg (11-20 mmHg) (p = 0.02) after the ascent. Arterial oxygen saturation decreased from 95.4 % to 91.5 % (p < 0.001). Neither of the participants complained of any ocular or systemic symptoms during or after ascending to the higher altitude. Mean IOP, before and after ascending, was positively correlated with systolic blood pressure before and after the increase in altitude (Pearson correlation coefficient, 0.41, p = 0.002 and Pearson correlation coefficient, 0.37, p = 0.006, respectively). Intraocular pressure changes did not correlate with age, pulse rate, or arterial oxygen saturation.
Conclusion: A rapid, effortless increase in altitude (over a moderate range in altitude) decreases IOP in healthy individuals. The observed decrease may not be clinically significant; however, it shows the versatility of IOP control mechanisms in response to alteration in altitude and temperature.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00417-012-2050-4 | DOI Listing |
BMC Genom Data
January 2025
School of Epidemiology and Public Health, University of Ottawa, 600 Peter Morand Crescent, Office 101E, Ottawa, Ontario, K1G 5Z3, Canada.
High intraocular pressure (IOP) is an important risk factor for glaucoma, which is influenced by genetic and environmental factors. However, the etiology of high IOP remains uncertain. Metabolites are compounds involved in metabolism which provide a link between the internal (genetic) and external environments.
View Article and Find Full Text PDFClin Exp Optom
January 2025
Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, Shanghai, China.
Clinical Relevance: Accommodation is crucial for clear near vision and is predominantly affected by presbyopia. The ability to modulate accommodative function with eye drops could offer a pharmacological approach to manage presbyopia.
Background: To investigate the effects of different concentrations of pilocarpine eye drops on ocular accommodation in young volunteers.
Am J Ophthalmol
January 2025
Hacettepe University School of Medicine, Department of Ophthalmology, Ankara, Turkey.
Objective: To evaluate the effects of Fanconi anemia (FA) on retinal and choroidal microvasculature using Optical Coherence Tomography (OCT) and Optical Coherence Tomography Angiography (OCTA).
Design: Cohort study with age-matched controls.
Subjects And Participants: This study included 11 eyes from 11 patients diagnosed with FA and 12 eyes from 12 age-matched healthy controls.
Comput Biol Med
January 2025
Department of Mathematics and Statistics, The University of Lahore, Lahore Campus, Pakistan. Electronic address:
Glaucoma is an irreversible, progressive, degenerative eye disorder arising because of increased intraocular pressure, resulting in eventual vision loss if untreated. The QSPR relates, mathematically, by employing various algorithms, a specified property of a molecule that arises either from physical, chemical, or biological phenomena using various aspects of its structure. Here in, a similar application based on topological indices and inferences derived from the structure for the calculation of different drug properties like molar refractivity, refractive index, enthalpy, boiling points, molecular weight, and polarizability is presented.
View Article and Find Full Text PDFArq Bras Oftalmol
January 2025
Department of Ophthalmology, Guangdong Eye Institute, Guangdong General Hospital, Guangdong Academy of Medical Sciences. No. 106 Zhongshan Er Road, Guangzhou 510080, China.
Purpose: Although the orthokeratology effects on corneal biomechanics have been proven with clinical trials, reports of stiffness parameter change are scarce. This study investigated the short-term orthokeratology effects in pediatric myopia and compared stiffness parameter changes to those published in recent clinical investigations. This prospective study aimed to investigate corneal biomechanics changes induced by short-term overnight orthokeratology treatment, focusing on stiffness parameter at A1 and stress-strain index.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!