Attention has begun to focus on the pulmonary delivery of antifungal agents for invasive fungal infections as inhalation of the fungal spores is often the initial step in the pathogenesis of many of these infections, including invasive pulmonary aspergillosis (IPA). IPA in immunocompromised patients has high mortality rates despite current systemic (oral or intravenous) therapies. In this study, particulate voriconazole (VRC) formulations were designed with suitable properties for inhalation using thin film freezing (TFF), a particle engineering process capable of producing low-density porous aggregate particles. Nanostructured amorphous morphology of VRC was less favorable in vitro and in vivo than microstructured crystalline morphology, despite being a poorly water-soluble compound. Using a Handihaler dry powder inhaler (DPI), microstructured crystalline TFF-VRC and nanostructured amorphous TFF-VRC-PVP K25 (1:3) had fine particle fractions of 37.8% and 32.4% and mass median aerodynamic diameters of 4.2 and 5.2 μm, respectively. Single dose 24-h pharmacokinetic studies were conducted in ICR mice. AUC(0-24h) in the lung tissue and plasma was 452.6 μg h/g wet lung weight and 38.4 μg h/mL, respectively, following a 10mg/kg insufflated dose of TFF-VRC directly into the lungs of the mice, while AUC(0-24 h) in the lung tissue and plasma was 232.1 μg h/g wet lung weight and 18.6 μg h/mL, respectively, following a 10mg/kg insufflated dose of TFF-VRC-PVP K25 (1:3). High concentrations of VRC in lung tissue coupled with clinically relevant plasma concentrations suggest that pulmonary delivery of microstructured crystalline VRC could potentially be a beneficial strategy for administration of VRC to patients with invasive pulmonary fungal infections.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejpb.2012.04.019 | DOI Listing |
Sensors (Basel)
January 2025
State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
This study has investigated the effects of different annealing temperatures on the microstructure, chemical composition, phase structure, and piezoelectric properties of ZnO films. The analysis focuses on how annealing temperature influences the oxygen content and the preferred c-axis (002) orientation of the films. It was found that annealing significantly increases the grain size and optimizes the columnar crystal structure, though excessive high-temperature annealing leads to structural degradation.
View Article and Find Full Text PDFMaterials (Basel)
December 2024
Faculty of Physics and Astronomy, University of Wroclaw, 9 Maxa Born Square, 50-204 Wroclaw, Poland.
This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles' microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.
Int J Biol Macromol
January 2025
College of Engineering, Northeast Agricultural University, Harbin 150030, China. Electronic address:
This study investigates the effects of varying heat stress temperatures (56 °C to 76 °C) on the gel characteristics of egg white protein. The results indicate that when the heat stress temperature exceeds 60 °C, the textural properties, water-holding capacity, and freeze-thaw stability of egg white gel (EWG) decrease to varying extents compared to untreated EWG. At 76 °C, the proportion of free water in EWG increases from 0.
View Article and Find Full Text PDFFood Chem X
January 2025
College of Food Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China.
Steam explosion (SE) and cellulase treatment are potentially effective processing methods for by-products, for use in high-value applications. The treatment conditions were optimized by response surface methodology, increasing the soluble dietary fiber (SDF) yield by 1.52 and 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!