AI Article Synopsis

  • Research is focusing on delivering antifungal agents like voriconazole (VRC) directly to the lungs since inhalation of fungal spores can lead to severe infections, especially in immunocompromised patients.
  • New formulations of VRC were created using thin film freezing (TFF) to produce particles suitable for inhalation, revealing that microstructured crystalline forms were more effective than nanostructured amorphous forms.
  • Pharmacokinetic studies in mice showed that microstructured crystalline TFF-VRC achieved higher concentrations in lung tissue compared to the amorphous form, suggesting that this delivery method could be a promising approach for treating invasive pulmonary fungal infections.

Article Abstract

Attention has begun to focus on the pulmonary delivery of antifungal agents for invasive fungal infections as inhalation of the fungal spores is often the initial step in the pathogenesis of many of these infections, including invasive pulmonary aspergillosis (IPA). IPA in immunocompromised patients has high mortality rates despite current systemic (oral or intravenous) therapies. In this study, particulate voriconazole (VRC) formulations were designed with suitable properties for inhalation using thin film freezing (TFF), a particle engineering process capable of producing low-density porous aggregate particles. Nanostructured amorphous morphology of VRC was less favorable in vitro and in vivo than microstructured crystalline morphology, despite being a poorly water-soluble compound. Using a Handihaler dry powder inhaler (DPI), microstructured crystalline TFF-VRC and nanostructured amorphous TFF-VRC-PVP K25 (1:3) had fine particle fractions of 37.8% and 32.4% and mass median aerodynamic diameters of 4.2 and 5.2 μm, respectively. Single dose 24-h pharmacokinetic studies were conducted in ICR mice. AUC(0-24h) in the lung tissue and plasma was 452.6 μg h/g wet lung weight and 38.4 μg h/mL, respectively, following a 10mg/kg insufflated dose of TFF-VRC directly into the lungs of the mice, while AUC(0-24 h) in the lung tissue and plasma was 232.1 μg h/g wet lung weight and 18.6 μg h/mL, respectively, following a 10mg/kg insufflated dose of TFF-VRC-PVP K25 (1:3). High concentrations of VRC in lung tissue coupled with clinically relevant plasma concentrations suggest that pulmonary delivery of microstructured crystalline VRC could potentially be a beneficial strategy for administration of VRC to patients with invasive pulmonary fungal infections.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejpb.2012.04.019DOI Listing

Publication Analysis

Top Keywords

microstructured crystalline
12
lung tissue
12
dry powder
8
thin film
8
film freezing
8
pulmonary delivery
8
fungal infections
8
invasive pulmonary
8
nanostructured amorphous
8
tff-vrc-pvp k25
8

Similar Publications

Temperature Dependence on Microstructure, Crystallization Orientation, and Piezoelectric Properties of ZnO Films.

Sensors (Basel)

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.

This study has investigated the effects of different annealing temperatures on the microstructure, chemical composition, phase structure, and piezoelectric properties of ZnO films. The analysis focuses on how annealing temperature influences the oxygen content and the preferred c-axis (002) orientation of the films. It was found that annealing significantly increases the grain size and optimizes the columnar crystal structure, though excessive high-temperature annealing leads to structural degradation.

View Article and Find Full Text PDF

This research explores how varying proportions of virgin polyethylene terephthalate (vPET) and recycled polyethylene terephthalate (rPET) in vPET-rPET blends, combined with preform thermal conditions during the stretch blow molding (SBM) process, influence PET bottles' microscopic characteristics. Key metrics such as viscosity, density, crystallinity, amorphous phase relaxation, and microcavitation were assessed using response surface methodology (RSM). Statistical analysis, including Analysis of variance (ANOVA) and its power, supported the interpretation of results.

View Article and Find Full Text PDF

Structural Changes in Semi-Crystalline Ethylene-Based Ionomers During the Heating Process.

Polymers (Basel)

December 2024

Graduate School of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan.

Article Synopsis
  • The study explored how different ionic groups in ethylene-based ionomers affect their behavior when heated, focusing on carboxylic acid groups neutralized by Zn and Na ions.
  • Differential scanning calorimetry (DSC) showed two endothermic peaks during heating, with the best melting enthalpy occurring at specific Na/Zn ratios, indicating optimal crystallite growth with both ions.
  • X-ray scattering techniques revealed temperature-dependent phase transitions of the crystals, and expansions of ionic aggregates were linked to the melting of polyethylene crystals, highlighting the relationship between ionic composition, microstructure, and thermal properties.
View Article and Find Full Text PDF

This study investigates the effects of varying heat stress temperatures (56 °C to 76 °C) on the gel characteristics of egg white protein. The results indicate that when the heat stress temperature exceeds 60 °C, the textural properties, water-holding capacity, and freeze-thaw stability of egg white gel (EWG) decrease to varying extents compared to untreated EWG. At 76 °C, the proportion of free water in EWG increases from 0.

View Article and Find Full Text PDF

Steam explosion (SE) and cellulase treatment are potentially effective processing methods for by-products, for use in high-value applications. The treatment conditions were optimized by response surface methodology, increasing the soluble dietary fiber (SDF) yield by 1.52 and 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!