Phosphoenolpyruvate carboxylase (PEPC) is a tightly controlled anaplerotic enzyme situated at a pivotal branch point of plant carbohydrate-metabolism. In developing castor oil seeds (COS) a novel allosterically-densensitized 910-kDa Class-2 PEPC hetero-octameric complex arises from a tight interaction between 107-kDa plant-type PEPC and 118-kDa bacterial-type PEPC (BTPC) subunits. Mass spectrometry and immunoblotting with anti-phosphoSer451 specific antibodies established that COS BTPC is in vivo phosphorylated at Ser451, a highly conserved target residue that occurs within an intrinsically disordered region. This phosphorylation was enhanced during COS development or in response to depodding. Kinetic characterization of a phosphomimetic (S451D) mutant indicated that Ser451 phosphorylation inhibits the catalytic activity of BTPC subunits within the Class-2 PEPC complex.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.febslet.2012.02.054 | DOI Listing |
Plant Methods
December 2024
School of Molecular Sciences, University of Western Australia, Crawley, WA, 6009, Australia.
The genus Flaveria has been studied extensively as a model for the evolution of C photosynthesis. Thus far, molecular analyses in this genus have been limited due to a dearth of genomic information and the lack of a rapid and efficient transformation protocol. Since their development, Agrobacterium-mediated transient transformation protocols have been instrumental in understanding many biological processes in a range of plant species.
View Article and Find Full Text PDFJ Agric Food Chem
December 2024
The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China.
Ectoine is a valuable compatible solute with extensive applications in bioengineering, cosmetics, medicine, and the food industry. While certain halophilic bacteria can naturally produce ectoine, as a model organism for biomanufacturing, offers significant advantages to be engineered for potentially high-level ectoine production. However, complex metabolic flux distributions and byproduct formation present bottlenecks that limit ectoine production in .
View Article and Find Full Text PDFFront Plant Sci
November 2024
College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
Agroforestry intercropping is an effective way to optimize land use and ensure food security. However, the physiological mechanism by which the shading of dominant plants inhibits the yield of non-dominant plants in this mode remains to be investigated. A two-year location experiment of walnut-winter wheat intercrop combined with exogenous 6-benzyladenine (6-BA, the first synthetic cytokinin) treatment was conducted to reveal the mechanism of 6-BA in inhibiting wheat growth and yield formation under shade stress by measuring the photosynthetic characteristics, antioxidant capacity, hormone homeostasis of wheat flag leaves and yield.
View Article and Find Full Text PDFFish Physiol Biochem
February 2025
Key Aboratory of Tropical and Subtropical Fishery Resource Application and Cultivation, China Ministry of Agriculture, Pearl River Fisheries Research Institute, Chinese Academy of Fisheries Sciences, Guangzhou, 510380, China.
High temperatures cause abnormal energy metabolism and inhibit the growth of fish in aquaculture. However, the mechanism of energy metabolism under chronic heat stress is still unknown. In this study, largemouth bass (Micropterus salmoides, LMB) was treated with 25℃, 29℃, and 33℃ for 8 weeks.
View Article and Find Full Text PDFJ Hazard Mater
November 2024
National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China. Electronic address:
The vanadium (V) toxicity predominantly is the primary limitation in restraining pepper growth. The silicon (Si) in pepper plants induced the transcript level of the polyamines metabolism pathway genes, including the arginase (CbARG), ornithine decarboxylase (CbODC), arginine decarboxylase (CbADC), N-carbamoylputrescine amidase (CbNCA), Spermidine synthase (CbSPDS), copper binding diamine oxidase (CbCuAO) to overcome the V toxicity. The polyamines, including the Spm, Spd, and Put, induced with Si about 41.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!