In vitro matured (IVM) buffalo oocytes at the metaphase of the second meiotic division (MII) were vitrified in 20% Me(2)SO: 20% EG (v/v) and 0.5M sucrose (VA), or 35% EG (v/v), 50mg/mL polyvinylpyrrolidone (PVP), and 0.4M trehalose (VB), either on cryotops or as 2μL microdrops. The viability was assessed after warming by fluorescein diacetate (FDA) staining and all surviving oocytes were subjected to ICSI and ethanol activation. All vitrified groups had similar recovery rates but both VA groups had significantly higher survival and pronuclear formation rates than either of the VB groups. Non treated control oocytes and non cryopreserved oocytes exposed to FDA had significantly higher survival, 2nd polar body extrusion, PN and blastocyst formation rates than any of the four vitrified groups (P<0.05). In conclusion The cryotop and microdrop methods are equally effective for buffalo oocyte vitrification, and although vitrification in VA solution yielded higher rates of survival and formation of 2 pronuclei than VB, the rate of blastocyst formation was comparable for both solutions. A detailed analysis of oocytes that extruded the second polar body after ICSI and activation revealed that only a minority (7-20% of the vitrified and 46-48% of the control oocytes) also had two pronuclei, indicating that normal activation is compromised by vitrification.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cryobiol.2012.04.006DOI Listing

Publication Analysis

Top Keywords

buffalo oocytes
8
vitrified groups
8
rates groups
8
higher survival
8
formation rates
8
oocytes
5
effects vitrification
4
vitrification cryoprotectant
4
cryoprotectant treatment
4
treatment cooling
4

Similar Publications

Molecular regulatory effect of the ergot alkaloid methylergometrine on the α3β4 nicotinic acetylcholine receptor.

Biochem Biophys Res Commun

December 2024

Department of Biotechnology and Department of Integrative Food, Bioscience and Biotechnology (BK21 FOUR), Chonnam National University, Gwangju, 61186, South Korea. Electronic address:

Methylergometrine has widely been used pharmacologically to treat conditions such as pain, addiction, vasoconstriction, migraines, and Parkinson's disease. Despite its side effects, it is used as a therapeutic agent and research material for various diseases based on its natural potential; however, the regulatory effect of its interaction with the nicotinic acetylcholine receptor (nAChR) has not yet been investigated. The α3β4 nAChR is an ion channel essential for neurotransmission within the sympathetic, parasympathetic, and autonomic nervous systems.

View Article and Find Full Text PDF

Lipids in cumulus-oocyte complexes are important actors in molecular signalling pathways and are influenced by maturation conditions. Acetyl-L-carnitine (ALC) is a carrier involved in fatty acid transport and is a promoter of β-oxidation. Although the embryonic development potential of oocytes can be improved when ALC is added to the maturation medium, the effects of ALC on the lipid content and composition of oocytes and cumulus cells remain unknown.

View Article and Find Full Text PDF

Supplementation with L-kynurenine during in vitro maturation improves bovine oocytes developmental competence through its antioxidative action.

Theriogenology

February 2025

State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, Guangxi University, Nanning, 530005, China. Electronic address:

Oxidative stress impairs the developmental potential of oocytes during in vitro maturation (IVM). L-kynurenine (L-KYN), an endogenous metabolite, exhibits antioxidant, anti-inflammatory and neuroprotective effects. This work aimed to evaluate the potential effects of L-KYN on bovine oocyte IVM and its mechanisms.

View Article and Find Full Text PDF

Growth differentiation factor 9 ( is an oocyte-specific paracrine factor involved in bidirectional communication, which plays an important role in oocyte developmental competence. In spite of its vital role in reproduction, there is insufficient information about exact transcriptional control mechanism of GDF9. Hence, present study was undertaken with the aim to study the expression of basic helix-loop-helix (bHLH) transcription factors (TFs) such as the factor in the germline alpha (FIGLA), twist-related protein 1 (TWIST1) and upstream stimulating factor 1 and 2 (USF1 and USF2), and nuclear receptor (NR) superfamily TFs like germ cell nuclear factor (GCNF) and oestrogen receptor 2 (ESR2) under three different maturation (IVM) groups [follicle-stimulating hormone (FSH), insulin-like growth factor-1 (IGF1) and oestradiol)] along with all supplementation group as positive control, to understand their role in regulation of GDF9 expression.

View Article and Find Full Text PDF

Exploration of transcriptional regulation network between buffalo oocytes and granulosa cells and its impact on different diameter follicles.

BMC Genomics

October 2024

Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China.

Article Synopsis
  • - The study investigates the reproductive performance of water buffaloes by analyzing gene expression in granulosa cells and oocytes from follicles of varying sizes to identify key genes involved in follicle development.
  • - Researchers identified 918 transcripts from granulosa cells and 1401 from oocytes that correlated with follicle size, revealing significant expression differences and highlighting the roles of specific genes and lncRNAs in follicular growth.
  • - The findings suggest that genes like BUB1, influenced by certain lncRNAs, and others related to hormone metabolism may be crucial for improving reproductive performance in buffaloes, offering insights into the mechanisms behind follicle dominance.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!