Polymer Langmuir monolayers spread on a water surface are one of the best models for two-dimensional (2D) polymer and have been extensively studied. However, the most fundamental issue in understanding a 2D film, the polymer chain packing in the film, is still not well-understood, especially from the experimental point of view. Direct observation of the chain packing by microscopy at a molecular level, such as by atomic force microscopy (AFM), might be one of the most promising ways to study this issue; however, because of the limited resolution of the method, the chain packing of polymer cannot be resolved by AFM, except for especially large polymers. Here, we show that a mixed monolayer of vinyl polymers, poly(methyl methacrylate) (PMMA) and poly(n-nonyl acrylate) (PNA), was miscible at a low surface pressure, and if a small amount of PMMA chains was solubilized in a PNA monolayer, the isolated PMMA chains in the PNA monolayer were, for the first time, successfully visualized by AFM with a clear contrast, which originated from a difference of rigidities of the polymers due to their different glass transition temperatures (105 °C(PMMA) and -89 °C(PNA)). The PMMA chains were found to strongly interpenetrate into the PNA monolayer, with a radius of gyration (R(g(PMMA))) that was several times larger than that of the 2D ideal chain (segregated-chain). Furthermore, the radius scaled with the molecular weight of the PMMA (M(PMMA)) as R(g(PMMA)) ∝ M(PMMA)(0.63), which was between the scaling of the 2D ideal chain (segregated chain), R(g) ∝ M(0.5), and the 2D chain in good solvent, R(g) ∝ M(0.75). On the other hand, R(g(PMMA)) was independent of the molecular weight of the PNA matrix over a wide range. These results indicate that the PNA/PMMA monolayer is a strongly miscible system, although the R(g(PMMA)) scaling with M(PMMA) (0.63) is somewhat smaller than that expected for a 2D chain in good solvent systems (0.75). The generation of molecular level information by direct observation of polymer chains in 2D blend films should improve our understanding of polymer 2D films.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jp303063c | DOI Listing |
Langmuir
January 2025
Department of Physics, Virginia Tech, Blacksburg, Virginia 24061, United States.
Lipid membranes form the primary structure of cell membranes and serve as configurable interfaces across numerous applications including biosensing technologies, antifungal treatments, and therapeutic platforms. Therefore, the modification of lipid membranes by additives has important consequences in both biological processes and practical applications. In this study, we investigated a nicotinic-acid-based gemini surfactant (NAGS) as a chemically tunable molecular additive for modulating the structure and phase behavior of liposomal membranes.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Molecular docking is a crucial technique for elucidating protein-ligand interactions. Machine learning-based docking methods offer promising advantages over traditional approaches, with significant potential for further development. However, many current machine learning-based methods face challenges in ensuring the physical plausibility of generated docking poses.
View Article and Find Full Text PDFMicromachines (Basel)
December 2024
Mechatronics Engineering Department, Istanbul Ticaret University, 34854 Maltepe, Turkey.
An automated micro-tweezers system with a flexible workspace would benefit the intelligent sorting of live cells. Such micro-tweezers could employ a forced vortex strong enough to capture a single cell. Furthermore, addressable control of the position to the vortex would constitute a robotic system.
View Article and Find Full Text PDFActa Crystallogr C Struct Chem
February 2025
Institute of Applied Chemistry, Shanxi University, Wucheng, Taiyuan, Shanxi 030006, People's Republic of China.
Three bisferrocene-based bis(acylthiourea) positional isomers, namely, 1,2-bis(ferrocenylcarbonylthioureido)benzene (1), 1,3-bis(ferrocenylcarbonylthioureido)benzene (2) and 1,4-bis(ferrocenylcarbonylthioureido)benzene (3), all [Fe(CH)(CHNOS)], have been synthesized via facile nucleophilic addition reactions of 2.3 equivalents of ferrocenoyl isothiocyanate with o-, m- and p-phenylenediamine, respectively. The structures of the three new synthesized isomers were fully characterized by H NMR, C NMR, IR and UV-Vis spectroscopy, elemental analyses and cyclic voltammetry.
View Article and Find Full Text PDFCarbohydr Polym
March 2025
Department of Chemistry, Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, VA 24061, USA; Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA 24061, USA. Electronic address:
Combining polysaccharides with polypeptides enables growth of diverse nanostructures with minimal toxicity, low immune response, and potential biodegradability. However, examples of nanostructures combining polysaccharides with polypeptides are limited due to synthetic difficulties and related issues of solubility, purification, and characterization, with previous reports of polysaccharide-block-polypeptide block copolymers requiring methods such as polymer-polymer coupling and post-polymerization modifications paired with difficult purification steps. Here, we synthesized dextran-block-poly(benzyl glutamate) block copolymers in water via polymerization-induced self-assembly (PISA) to form nanostructures in situ, studying their morphologies using experimental methods and molecular modeling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!