Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.201201451 | DOI Listing |
J Org Chem
January 2025
U.S. Process Chemistry, CMC Synthetics Platform, Sanofi, 350 Water Street, Cambridge, Massachusetts 02141, United States.
Imidates are versatile synthetic intermediates that contain ambiphilic reactivity, making them valuable pharmaceutically relevant synthons. Despite their extensive utility, imidates are typically generated in situ rather than isolated due to their inherent instability. This report details a systematic study that led to the discovery of an isolable imidate hydrogen chloride (HCl) salt that exhibits high tolerance to hydrolysis, thereby improving process control and facilitating downstream transformations.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.
Direct cross-coupling reactions between two similar unactivated partners are challenging but constitute a powerful strategy for the creation of new carbon-carbon bonds in organic synthesis. [4]Dendralenes are a class of acyclic branched conjugated oligoenes with great synthetic potential for the rapid generation of structural complexity, yet the chemistry of [4]dendralenes remains an unexplored field due to their limited accessibility. Herein, we report a highly selective palladium-catalyzed oxidative cross-coupling of two allenes with the presence of a directing olefin in one of the allenes, enabling the facile synthesis of a broad range of functionalized [4]dendralenes in a convergent modular manner.
View Article and Find Full Text PDFOrg Lett
January 2025
School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
The stereoselective synthesis of highly substituted cyclobutanes is essential for the development of lead candidates in drug discovery. Herein, we present a novel Rh(III)-catalyzed reaction pathway for synthesizing substituted cyclobutanes, which involves a concerted N-C bond formation and C-C bond cleavage between 2-aryl quinazolinones and alkylidenecyclopropanes. Notably, the combination of Rh(III) catalyst and HFIP solvent plays a critical role in facilitating the formation of cyclobutane rings.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
Innovation Institute of Carbon Neutrality, International Joint Laboratory of Catalytic Chemistry, State Key Laboratory of Advanced Special Steel, Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, China.
Nowadays, it is challenging to achieve SO-tolerant environmental catalysis for NO reduction because of the thermodynamically favorable transformation of reactive sites to inactive sulfate species in the presence of SO. Herein, we achieve enhanced low-temperature SO-tolerant NO reduction by manipulating the dynamic coordination environment of active sites. Engineered by coordination chemistry, SiO-CeO composite oxides with a short-range ordered Ce-O-Si structure were elaborately constructed on a TiO support.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India.
The discovery of moiré physics in two-dimensional (2D) materials has opened new avenues for exploring unique physical and chemical properties induced by intralayer/interlayer interactions. This study reports the experimental observation of moiré patterns in 2D bismuth oxyselenide (BiOSe) nanosheets grown through one-pot chemical reaction methods and a sonication-assisted layer separations technique. Our findings demonstrate that these moiré patterns result from the angular stacking of the nanosheets at various twist angles, leading to the formation of moiré superlattices (MSLs) with distinct periodicities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!