Current methods to evaluate the biologic development of bone grafts in human beings do not quantify results accurately. Cranial burr holes are standardized critical bone defects, and the differences between bone powder and bone grafts have been determined in numerous experimental studies. This study evaluated quantitative computed tomography (QCT) as a method to objectively measure cranial bone density after cranial reconstruction with autografts. In each of 8 patients, 2 of 4 surgical burr holes were reconstructed with autogenous wet bone powder collected during skull trephination, and the other 2 holes, with a circular cortical bone fragment removed from the inner table of the cranial bone flap. After 12 months, the reconstructed areas and a sample of normal bone were studied using three-dimensional QCT; bone density was measured in Hounsfield units (HU). Mean (SD) bone density was 1535.89 (141) HU for normal bone (P < 0.0001), 964 (176) HU for bone fragments, and 453 (241) HU for bone powder (P < 0.001). As expected, the density of the bone fragment graft was consistently greater than that of bone powder. Results confirm the accuracy and reproducibility of QCT, already demonstrated for bone in other locations, and suggest that it is an adequate tool to evaluate cranial reconstructions. The combination of QCT and cranial burr holes is an excellent model to accurately measure the quality of new bone in cranial reconstructions and also seems to be an appropriate choice of experimental model to clinically test any cranial bone or bone substitute reconstruction.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1097/SCS.0b013e31824db845 | DOI Listing |
Introduction: Solitary plasmacytomas are tumors characterized by a local increase of malignant plasma cells in soft tissue or bone and may occur anywhere without evidence of systemic disease. The aim was to focus on the main surgical techniques and outcomes for this rare chest wall tumor.
Methods: Patients with solitary plasmacytoma involving a rib, who were operated for diagnostic or treatment purposes between 2018 and 2023 were retrospectively reviewed.
Biomed Phys Eng Express
January 2025
Chiba University Center for Frontier Medical Engineering, 1-33 Yayoi-cho, Inage-ku, Chiba, Chiba, 263-8522, JAPAN.
Traumatic injury remains a leading cause of death worldwide, with traumatic bleeding being one of its most critical and fatal consequences. The use of whole-body computed tomography (WBCT) in trauma management has rapidly expanded. However, interpreting WBCT images within the limited time available before treatment is particularly challenging for acute care physicians.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Orthopedics, The First Affiliated Hospital of Guangxi University of Chinese Medicine, Nanning, Guangxi Zhuang Autonomous Region, China.
This study compares and investigates the efficacy of 2 different surgical methods for early stage femoral head necrosis and analyze the factors affecting surgical outcomes and long-term femoral head survival. A retrospective analysis was conducted on the clinical data of 48 patients (52 hips) with femoral head necrosis who underwent either the Super-Path or Watson-Jones approach from January 1, 2016, to January 1, 2024. Harris scores at multiple time points before and after surgery were compared using repeated-measures analysis of variance (ANOVA), and a COX proportional hazards model was used to analyze risk factors.
View Article and Find Full Text PDFMedicine (Baltimore)
January 2025
Department of Urology, Shiyan People's Hospital, Jinzhou Medical University Training Base, Shiyan, China.
The aim of this study was to evaluate the clinical benefits and outcomes of adjuvant radiation therapy on adrenocortical carcinoma (ACC) patients. All patients with ACC that were reported between 2010 and 2015 were identified from the Surveillance, Epidemiology, and End Results database. A forward-stepwise Cox proportional hazards regression was used to identify independent risk factors.
View Article and Find Full Text PDFAnal Chem
January 2025
Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Provincial Key Laboratory of Photonics Technology, Fujian Normal University, Fuzhou, Fujian 350117, China.
Multiple myeloma is a hematologic malignancy characterized by the proliferation of abnormal plasma cells in the bone marrow. Despite therapeutic advancements, there remains a critical need for reliable, noninvasive methods to monitor multiple myeloma. Circulating plasma cells (CPCs) in peripheral blood are robust and independent prognostic markers, but their detection is challenging due to their low abundance.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!