Single nanowire solar cells are a promising candidate as nanoelectronic power sources. Metallic cores were integrated in single nanowire solar cells, and the influence of the silver core on the absorption efficiency and the short circuit current was studied in this work. A Full-wave Vectorial Finite Element Method approach was used to rigorously solve Maxwell's equations in two dimensions. The photon absorption in solar cells was modulated delicately to achieve higher absorption efficiencies and short circuit currents, by tuning the core size and radius of nanowire solar cells. The light trapping stemmed mainly from the localized surface plasmons and also from Mie scattering and leaky mode resonances. The results showed that an enhancement of 16.6% in the photocurrent could be achieved by α-Si nanowire solar cells with the proper core size and filling-ratio compared to that without silver core.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.011506 | DOI Listing |
Nanoscale Adv
January 2025
Université de Lorraine, CNRS, LRGP F-54000 Nancy France
Water-dispersible core/shell CuInZnSe/ZnS (CIZSe/ZnS) quantum dots (QDs) were efficiently synthesized under microwave irradiation using -acetylcysteine (NAC) and sodium citrate as capping agents. The photoluminescence (PL) emission of CIZSe/ZnS QDs can be tuned from 593 to 733 nm with varying the Zn : Cu molar ratio in the CIZSe core. CIZSe/ZnS QDs prepared with a Zn : Cu ratio of 0.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Department of Chemistry and Centre for Processable Electronics, Molecular Sciences Research Hub, Imperial College London, London W12 0BZ, U.K.
Antisolvent treatment is used in the fabrication of perovskite films to control grain growth during spin coating. We study widely incorporated aromatic hydrocarbons and aprotic ethers, discussing the origin of their performance differences in 2D/3D Sn perovskite (PEAFASnI) solar cells. Among the antisolvents that we screen, diisopropyl ether yields the highest power conversion efficiency in solar cells.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Department of Materials, Imperial College London, Exhibition Road, London SW7 2AZ, U.K.
Antimony sulfide (SbS) is a promising candidate as an absorber layer for single-junction solar cells and the top subcell in tandem solar cells. However, the power conversion efficiency of SbS-based solar cells has remained stagnant over the past decade, largely due to trap-assisted nonradiative recombination. Here we assess the trap-limited conversion efficiency of SbS by investigating nonradiative carrier capture rates for intrinsic point defects using first-principles calculations and Sah-Shockley statistics.
View Article and Find Full Text PDFACS Energy Lett
January 2025
Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Hahn-Meitner Platz 1, 14109 Berlin, Germany.
Tin-based perovskite solar cells offer a less toxic alternative to their lead-based counterparts. Despite their promising optoelectronic properties, their performances still lag behind, with the highest power conversion efficiencies reaching around 15%. This efficiency limitation arises primarily from electronic defects leading to self-p-doping and stereochemical activity of the Sn(II) ion, which distorts the atomic arrangement in the material.
View Article and Find Full Text PDFAll-inorganic perovskite materials have been widely used in various devices, including lasers, light-emitting diodes (LEDs), and solar cells, due to their exceptional optoelectronic properties. Devices utilizing high-quality single crystals are anticipated to achieve significantly enhanced performance. In this work, we present a high-performance vertical cavity surface emitting laser (VCSEL) based on a single-crystal CsPbBr microplatelet, fabricated through a simple solution process and sandwiched between two distributed Bragg reflector (DBRs).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!