Active metal strip hybrid plasmonic waveguide with low critical material gain.

Opt Express

State Key Laboratory of Advanced Optical Communication Systems and Networks, Peking University, Beijing, China.

Published: May 2012

An active metal strip hybrid plasmonic waveguide (MSHPW) using gain materials as loss compensation is proposed with an extremely simple fabrication procedure. Gain materials are introduced either in the low-index layer or in the high-index layer of MSHPW. The effects of waveguide dimensions and material gain coefficients on loss compensation are analyzed at the communication wavelength. For one configuration presented here, a critical material gain as low as 3.8cm(-1) is sufficient for fully compensation of the loss when using a high-index gain material. The active MSHPW with low critical material gain opens up opportunities for practical plasmonic devices in active applications such as amplifiers, sources, and modulators.

Download full-text PDF

Source
http://dx.doi.org/10.1364/OE.20.011487DOI Listing

Publication Analysis

Top Keywords

material gain
16
critical material
12
active metal
8
metal strip
8
strip hybrid
8
hybrid plasmonic
8
plasmonic waveguide
8
low critical
8
gain materials
8
loss compensation
8

Similar Publications

Cementless fixation in total joint arthroplasty: Factors impacting osseointegration.

J Clin Orthop Trauma

February 2025

Orthopedic Surgery, Brigham & Women's Hospital, Harvard University, Boston, MA, USA.

•The success of cementless fixation in TJA depends on a multitude of factors including biological, mechanical, implant, surgical, and material properties.•Biologic fixation has become the primary mode of fixation for the majority of primary total hip arthroplasty (THA) surgeries done today in the United States (US) due to its low complication rate and superior longevity compared to cemented fixation.•Cementless fixation has yet to gain wider acceptance in total knee arthroplasty (TKA) and hip hemiarthroplasty due to several factors including host bone quality, implant design, and surgical technique.

View Article and Find Full Text PDF

Tri-Prism Origami Enabled Soft Modular Actuator for Reconfigurable Robots.

Soft Robot

January 2025

Shanghai Key Laboratory of Intelligent Manufacturing and Robotics, School of Mechatronic Engineering and Automation, Shanghai University, Shanghai, China.

Soft actuators hold great potential for applications in surgical operations, robotic manipulation, and prosthetic devices. However, they are limited by their structures, materials, and actuation methods, resulting in disadvantages in output force and dynamic response. This article introduces a soft pneumatic actuator capable of bending based on triangular prism origami.

View Article and Find Full Text PDF

In this work, a five-mode erbium-doped waveguide amplifier with low differential modal gain (DMG) is first proposed. A novel, to the best of our knowledge, gain equalization scheme for synergistic reconfiguration of refractive index and concentration doping is adopted to equalize the modal gains based on the dual-layer ring core structure. NaYF:5%Gd,20%Yb,2%Er@NaYF nanoparticles are synthesized by annealing treatment to improve the emission spectral properties and the concentration doped in a host core material.

View Article and Find Full Text PDF

Relationship between the learning gains and learning style preferences among students from the school of medicine and health sciences.

BMC Med Educ

January 2025

Laboratorio de Inmunofarmacología, Instituto Nacional de Enfermedades Respiratorias, Calzada de Tlalpan 4502, Colonia Sección XVI, CP 14080, Mexico, México.

Background: The field of health sciences is constantly evolving, presenting significant challenges to student learning performance. Therefore, it is crucial to identify the factors influencing students' learning style preferences, as these relate to how they acquire, understand, interpret, organize, and process information from their courses. In this study, we evaluated whether there is a relationship between students' learning style preferences and their learning gains.

View Article and Find Full Text PDF

Ppb-Level Photoacoustic Detection of Chloroform Using Four-Microphone Array.

Anal Chem

January 2025

International Joint Laboratory for Integrated Circuits Design and Application, Ministry of Education, School of Physics, Zhengzhou University, Zhengzhou 450001, China.

The photoacoustic spectroscopy (PAS) system commonly enhances the efficiency of optical-acoustic-electrical energy conversion by increasing the laser power, optimizing the resonance characteristics of the photoacoustic cell (PAC), and improving the sensitivity of acoustic sensors. However, conventional systems using a single-microphone or a dual-microphone differential setup for point sampling of the photoacoustic signal fail to account for its spatial distribution, leading to a loss of spatial gain. Drawing on microphone array theory derived from sonar technology, this study, for the first time, presents a PAS sensing system based on a four-microphone array, which is applied to detect chloroform gas.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!