We investigate the interaction of an open (N + 1)-level extended V-type atomic system (i.e. a closed (N + 2)-level atomic system) with N coherent laser fields and one incoherent pumping field through both analytical and numerical calculations. Our results show that the system can exhibit multiple resonant gain suppressions via perfect quantum destructive interference, which is usually believed to be absent in closed three-level V system and its extended versions involving more atomic levels, with at most N - 1 transparency windows associated with very steep anomalous dispersions occurring in the system. The superluminal group velocity of the probe-laser pulse with at most N - 1 negative values can also be generated and controlled with little gain or absorption.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.010712 | DOI Listing |
J Phys Chem B
December 2024
State Key Laboratory of Physical Chemistry of Solid Surface, Key Laboratory of Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.
Nucleation is a critical step that determines the assembly pathway and the structure and functions of the peptide assemblies. However, the dynamic evolution of interactions between nucleating agents and peptides, as well as between peptides themselves during the nucleation process, remains elusive. Herein, we show that the heterogeneous nucleating agent carboxymethylcellulose (CMC) can promote the nucleation of Aβ (KF) peptide.
View Article and Find Full Text PDFJ Phys Chem B
December 2024
Research Institute of Interdisciplinary Science & School of Materials Science and Engineering, Dongguan University of Technology, Dongguan 523808, China.
Peptide-based hydrogels form a kind of promising material broadly used in biomedicine and biotechnology. However, the correlation between their hydrogen bonding dynamics and mechanical properties remains uncertain. In this study, we found that the adoption of β-sheet and α-helix secondary structures by ECF-5 and GFF-5 peptides, respectively, could further form fiber networks to immobilize water molecules into hydrogels.
View Article and Find Full Text PDFAm J Obstet Gynecol
December 2024
Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA. Electronic address:
Background: Most studies on pelvic floor muscle morphology (dimensions, shape) and its relationship with patient characteristic risk factors of pelvic floor dysfunction (demographics, medical history) have largely pertained to White individuals with vaginas. There is a need to establish normative data on pelvic floor muscle anatomy and identify morphological differences in racially diverse cohorts that may play a role in racial differences in the prevalence and pathophysiology of pelvic floor dysfunction.
Objective: (s): This study aimed to compare levator ani muscle thickness and levator hiatal morphology and their association with patient characteristics, between asymptomatic Black and White women-identifying individuals with a vagina of reproductive age.
NAR Mol Med
October 2024
Division of Hematology, Department of Internal Medicine, Mayo Clinic, 200 1st St SW, Rochester, MN, USA.
The A1 domain in Von Willebrand Factor (VWF) initiates coagulation through binding to platelet glycoprotein GPIbα receptors. Von Willebrand Disease (VWD)-Mutations in A1 that either impair (type 2M) or enhance (type 2B) platelet adhesion to VWF can locally destabilize and even misfold the domain. We leveraged misfolding in the gain-of-function type 2B VWD phenotype as a target, distinct from the normal conformation.
View Article and Find Full Text PDFOrphanet J Rare Dis
December 2024
Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Zhongshan Road 321#, Nanjing, 210008, Jiangsu, China.
Background And Objectives: Mitochondrial encephalomyopathy with lactic acidosis and stroke-like episodes (MELAS) syndrome is a maternally inherited mitochondrial disorder that mostly affects the central nervous system and skeletal muscle. This study provides a comprehensive summary of the clinical symptoms, multisystemic pathogenesis, and genetic characteristics of MELAS syndrome. The aim was to improve comprehension of clinical practice and gain a deeper understanding of the latest pathophysiological theories.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!