Two kinds of Al/Zr (Al(1%wtSi)/Zr and Al(Pure)/Zr) multilayers for extreme ultraviolet (EUV) optics were deposited on fluorine doped tin oxide coated glass by using direct-current magnetron sputtering technology. The comparison of the two systems shows that the Al(1%wtSi)/Zr multilayers have the lowest interfacial roughness and highest reflectivity. Based on the X-ray diffraction, the performance of the two systems is determined by the crystallization of Al layer. To fully understand the Al(1%wtSi)/Zr multilayer, we built up a two-layer model to fit situation of the AFM images, and simulate the grazing incident x-ray reflection-measurements of multilayers with various periods (N = 10, 40, 60, 80). Below 40 periods, the roughness components are lowered. After 40 periods, both surface and interfacial roughness increase with the period number, and decrease the reflectance. According to transmission electron microscope images, the model can represent the variable structure of the system.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OE.20.010692 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
School of Engineering, RMIT University, Bundoora, VIC 3083, Australia.
Graphene and its derivatives have been widely used as reinforcing nanofillers for high-performance polymer nanocomposites. The effectiveness of the reinforcement largely depends on the properties of the nanofiller-matrix interface, which can be represented by the interfacial shear strength (IFSS). This work systematically investigates IFSS enhancements for polyethylene (PE) nanocomposites reinforced by graphene origami (GOri) through molecular dynamics pull-out simulations.
View Article and Find Full Text PDFJACS Au
December 2024
Department of Materials Design Innovation Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Aichi, Japan.
Controlling the nucleation, growth, and dissolution of Li is crucial for the high cycling stability in rechargeable Li metal batteries. The overpotential for Li nucleation (η) on Li alloys such as Li-Au is generally lower than that on metal current collectors (CCs) with very limited Li solubility like Cu. However, the alloying process of CC and its impact on the Li nucleation kinetics remain unclear.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Plant Fiber Material Science Research Center, State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, PR China; Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangzhou 510640, PR China.
The development of flexible, intelligent, and lightweight optoelectronic devices based on flexible transparent conductive electrodes (FTCEs) utilizing silver nanowires (AgNWs) has garnered increasing attention. However, achieving low surface resistance, strong adhesion to the flexible substrate, low surface roughness, and green degradability remains a challenge. Here, a composite electrode combining natural polymer cellulose nanofibers (TCNFs) with AgNWs was prepared.
View Article and Find Full Text PDFSci Rep
December 2024
Department of Mechanical and Industrial Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, 576104, Karnataka, India.
Metal and polymer interface bonding significantly influences the mechanical performance of fiber metal laminates (FMLs). Therefore, the effect of surface treatments (mechanical abrasion, nitric acid etching, P2 etching, sulfuric acid anodizing (SAA), and electric discharge machine (EDM) texturing) carried on aluminum 2024-T3 alloy sheets was evaluated considering surface morphology, surface topography, and surface roughness. Further, the influence of surface treatments on interfacial adhesion strength and failure mode between the aluminum alloy and carbon fiber prepreg was investigated.
View Article and Find Full Text PDFEcotoxicol Environ Saf
December 2024
Hebei University of Science and Technology, 050018, China. Electronic address:
Polylactic acid (PLA) composites with high straw content face several challenges, primarily due to the inherent brittleness of straw and its poor compatibility with the polymer matrix. In this study, scanning electron microscopy (SEM) was used to analyze the microscopic structure of wheat straw chemically modified by NaOH and the silane coupling agent, and it was concluded that both treatments effectively removed waxes and silica from the surface of the straw, enhanced fiber roughness, and improved interfacial adhesion. Notably, the silane coupling agent treatment not only facilitated the formation of chemical bonds between the straw fibers and the PLA matrix but also filled the interfiber pores, significantly increasing the structural density.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!