Protective effects of pinostrobin on β-amyloid-induced neurotoxicity in PC12 cells.

Cell Mol Neurobiol

School of Chinese Medicine, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, People's Republic of China.

Published: November 2012

Beta-Amyloid peptide (Aβ), a major protein component of brain senile plaques in Alzheimer's disease (AD), has been considered as a critical cause in the pathogenesis of AD. Pinostrobin, a potent flavonoid inducer, is the major and most active ingredient of Folium cajani. The present study aimed to investigate whether pinostrobin could provide protective effect against Aβ(25-35)-induced neurotoxicity in cultured rat pheochromocytoma (PC12) cells. The PC12 cells were pretreated with different concentrations of pinostrobin for 2 h, followed by the challenge with 20 μM Aβ(25-35) for 24 h. The results showed that pretreatment with pinostrobin significantly elevated cell viability, decreased the lactate dehydrogenase activity, the levels of intracellular reactive oxygen species and calcium, and mitochondrial membrane potential in Aβ(25-35)-treated PC12 cells. In addition, pinostrobin significantly suppressed the formation of DNA fragmentation and increased the ratio of Bcl-2/Bax. These results indicate that pinostrobin was able to exert a neuroprotective effect against Aβ(25-35)-induced neurotoxicity in PC12 cells, at least in part, via inhibiting oxidative damage and calcium overload, as well as suppressing the mitochondrial pathway of cellular apoptosis.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10571-012-9847-xDOI Listing

Publication Analysis

Top Keywords

pc12 cells
20
neurotoxicity pc12
8
aβ25-35-induced neurotoxicity
8
pinostrobin
7
pc12
5
cells
5
protective effects
4
effects pinostrobin
4
pinostrobin β-amyloid-induced
4
β-amyloid-induced neurotoxicity
4

Similar Publications

Aluminum Induces Neurotoxicity through the MicroRNA-98-5p/Insulin-like Growth Factor 2 Axis.

ACS Chem Neurosci

January 2025

Department of Occupational Health, School of Public Health, Shanxi Medical University, Taiyuan, Shanxi 030001, China.

Aluminum is a well-known and widely distributed environmental neurotoxin. This study aimed to investigate the effect of miR-98-5p targeting insulin-like growth factor 2 (IGF2) on aluminum neurotoxicity. Thirty-two Sprague-Dawley rats were randomly divided into four groups and administered 0, 10, 20, and 40 μmol/kg maltol aluminum [Al(mal)], respectively.

View Article and Find Full Text PDF

Unlabelled: Alzheimer's disease (AD) is a progressive neurological condition that causes brain shrinkage and cell death. This study aimed to identify the role of the NORAD/miR-26b-5p axis in AD. StarBase was used to examine the binding sequences of miR-26b-5p to LncRNA NORAD or its target genes, which were verified by a double luciferase reporter assay.

View Article and Find Full Text PDF

Parkinson's disease (PD) is a type of chronic neurodegenerative disorder. There is an ongoing need for the development of new medications to address this illness. Loureirin C is known to have a protective impact on neurological disorders.

View Article and Find Full Text PDF

Neuroprotective Indole Alkaloids from the Soil-Derived Fungus sp. XZ8.

J Nat Prod

January 2025

Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry and Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China.

A chemical investigation of the soil-derived fungus sp. XZ8 led to the isolation of five new indole alkaloids, trichindoles A-E (-), with diverse architectures, along with seven known analogues (-). Their structures were elucidated by extensive spectroscopic data analysis, and their absolute configurations were determined by single-crystal X-ray diffraction and modified Mosher's method.

View Article and Find Full Text PDF

The inhibition of acetylcholinesterase (AChE), an enzyme responsible for the inactivation and decrease in acetylcholine in the cholinergic pathway, has been considered an attractive target for small-molecule drug discovery in Alzheimer's disease (AD) therapy. In the present study, a series of TZD derivatives were designed, synthesized, and studied for drug likeness, blood-brain barrier (BBB) permeability, and adsorption, distribution, metabolism, excretion, and toxicity (ADMET). Additionally, docking studies of the designed compounds were performed on AChE.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!