Infantile hemangioma is a benign vascular tumor, characterized by a unique life cycle consisting of rapid growth and spontaneous regression. Three distinct phases (proliferating, involuting, and involuted) take place over the course of approximately 5-8 years, with specific cell types defining each separate phase. The origin of the cells comprising hemangiomas has been deliberated over since the late 1800s. We have recently provided experimental evidence that hemangiomas arise from multipotent stem cells. These hemangioma stem cells that give rise to the endothelial cells are also the essential source of adipocytes during hemangioma involution. The molecular mechanisms that regulate the differentiation of the hemangioma stem cells remain unclear. Although recent studies have elucidated a number of signaling pathways underlying hemangioma pathogenesis, many unanswered questions remain. Herein, we review the unique cellular composition of infantile hemangioma, as well as some of the signaling pathways active within hemangioma-genesis. Understanding the mechanisms behind changes in cellular fate throughout the hemangioma growth pattern will not only provide insight into the stem cell population that resides within the tumor, but will help to establish more effective eradicating therapies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.yexmp.2012.04.020 | DOI Listing |
Mol Biol Rep
January 2025
Pediatric Cell, and Gene Therapy Research Center Gene, Cell and Tissue Research Institute, Tehran University of Medical Sciences, Tehran, Iran.
Bone serves as a fundamental structural component in the body, playing pivotal roles in support, protection, mineral supply, and hormonal regulation. However, critical-sized bone injuries have become increasingly prevalent, necessitating extensive medical interventions due to limitations in the body's capacity for self-repair. Traditional approaches, such as autografts, allografts, and xenografts, have yielded unsatisfactory results.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Nephrology, First Affiliated Hospital of Naval Medical University, Shanghai Changhai Hospital, Shanghai, China.
Background: Chronic inflammation is well recognized as a key factor related to renal function deterioration in patients with diabetic kidney disease (DKD). Neutrophil extracellular traps (NETs) play an important role in amplifying inflammation. With respect to NET-related genes, the aim of this study was to explore the mechanism of DKD progression and therefore identify potential intervention targets.
View Article and Find Full Text PDFGenes Dev
December 2024
Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5T 3H7, Canada;
The nucleolus is a major subnuclear compartment where ribosomal DNA (rDNA) is transcribed and ribosomes are assembled. In addition, recent studies have shown that the nucleolus is a dynamic organizer of chromatin architecture that modulates developmental gene expression. rDNA gene units are assembled into arrays located in the p-arms of five human acrocentric chromosomes.
View Article and Find Full Text PDFJ Cell Mol Med
January 2025
Department of Leukemia, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
Induced pluripotent stem cell (iPSC)-derived natural killer (NK) cells offer an opportunity for a standardized, off-the-shelf treatment with the potential to treat a wider population of acute myeloid leukaemia (AML) patients than the current standard of care. FT538 iPSC-NKs express a high-affinity, noncleavable CD16 to maximize antibody dependent cellular cytotoxicity, a CD38 knockout to improve metabolic fitness, and an IL-15/IL-15 receptor fusion preventing the need for cytokine administration, the main source of adverse effects in NK cell-based therapies. Here, we sought to evaluate the potential of FT538 iPSC-NKs as a therapy for AML through their effect on AML cell lines and primary AML cells.
View Article and Find Full Text PDFJ Cosmet Dermatol
January 2025
Clinical Research Center of the Carolinas, Charleston, South Carolina, USA.
Background: Exosomes are extracellular vesicles, composed of a phospholipid bilayer, that are primarily derived from stem cells. The contents of exosomes can be incorporated into the tissue in which they are introduced, which presents a unique therapeutic option.
Aims: Exosomes have been investigated as a treatment for a number of medical ailments, but the literature supporting these indications is inconclusive.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!