Tissue-engineered bones (TEBs) constructed with bone-marrow-derived mesenchymal stem cells (BMSCs) seeded on biomaterial scaffolds have achieved good results for bone defect repair in both animal experiments and clinical trials. This has been limited, however, by the source and quantity of BMSCs. We here explored TEBs constructed by placenta-derived mesenchymal stem cells (PMSCs) and compared their effect for the repair of critical-sized segmental osteoperiosteal defects with TEBs constructed with BMSCs. PMSCs were isolated from rabbit placenta by gradient centrifugation and in vitro monolayer culturing, and BMSCs were isolated from the hindlimb bone marrow of newborn rabbit. Primary cultured PMSCs and BMSCs were uniformly in a spindle shape. Immunocytochemistry indicated that both types of cells are positive for CD44 and CD105, and negative for CD34 and CD40L, confirming that they are mesenchymal stem cells. BrdU-labeled PMSCs and BMSCs were respectively co-cultured with bio-derived bone materials to construct TEBs in vitro. Critical-sized segmental osteoperiosteal defects of radii were created in 24 rabbits by surgery. The defects were repaired with TEBs constructed with PMSCs and BMSCs. The results showed that TEBs constructed by both PMSCs and BMSCs could repair the osteoperiosteal defects in a 'multipoint' manner. Measurement of radiography, histology, immunohistochemistry, alkaline phosphatase activity, osteocalcin assaying and biomechanical properties have found no significant difference between the two groups at 2, 4, 8 and 12 weeks after the transplantation (P > 0.05). Taken together, our results indicate that PMSCs have similar biological characteristics and osteogenic capacity to BMSCs and can be used as a new source of seeding cells for TEBs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/j.1742-4658.2012.08625.x | DOI Listing |
APL Bioeng
March 2024
Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, State Key Laboratory of Respiratory Disease, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
Low viability of seed cells and the concern about biosafety restrict the application of cell-based tissue-engineered bone (TEB). Exosomes that bear similar bioactivities to donor cells display strong stability and low immunogenicity. Human umbilical cord mesenchymal stem cells-derived exosomes (hUCMSCs-Exos) show therapeutic efficacy in various diseases.
View Article and Find Full Text PDFFront Immunol
November 2021
Department of Orthopaedics, First Affiliated Hospital, Army Medical University, Chongqing, China.
Bone defects are a common orthopaedic concern, and an increasing number of tissue-engineered bones (TEBs) are used to repair bone defects. Allogeneic mesenchymal stem cells (allo-MSCs) are used as seed cells in many approaches to develop TEB constructs, but the immune response caused by allogeneic transplantation may lead to transplant failure. V gamma 4 T (Vγ4T) cells play an important role in mediating the immune response in the early stage after transplantation; therefore, we wanted to verify whether suppressing Vγ4T cells by herpesvirus entry mediator (HVEM)/B and T lymphocyte attenuator (BTLA) signalling can promote MSCs osteogenesis in the transplanted area.
View Article and Find Full Text PDFTissue Eng Part A
August 2020
National and Regional United Engineering Laboratory of Tissue Engineering, Department of Orthopaedics, The Third Military Medical University, Southwest Hospital, Chongqing, China.
J Emerg Manag
August 2017
Department of Urban and Regional Planning, University of Hawaii at Manoa, Honolulu, Hawaii.
Indonesia, a country of more than 17,000 islands, is exposed to many hazards. A magnitude 9.1 earthquake struck off the coast of Sumatra, Indonesia, on December 26, 2004.
View Article and Find Full Text PDFBone
June 2014
Regenerative Medicine and Cancer Program, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland, Australia; Australian Prostate Cancer Research Centre-Queensland, Queensland University of Technology and Translational Research Institute, Brisbane, Queensland, Australia. Electronic address:
As microenvironmental factors such as three-dimensionality and cell-matrix interactions are increasingly being acknowledged by cancer biologists, more complex 3D in vitro models are being developed to study tumorigenesis and cancer progression. To better understand the pathophysiology of bone metastasis, we have established and validated a 3D indirect co-culture model to investigate the paracrine interactions between prostate cancer (PCa) cells and human osteoblasts. Co-culture of the human PCa, LNCaP cells embedded within polyethylene glycol hydrogels with human osteoblasts in the form of a tissue engineered bone construct (TEB), resulted in reduced proliferation of LNCaP cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!