Multiple proteins with essential mitochondrial functions have glycosylated isoforms.

Mitochondrion

Biology Department, University of Nevada Reno, 1664 N. Virginia St., MS-314, Reno, NV 89557, USA.

Published: July 2012

AI Article Synopsis

  • Researchers found glycosylated forms of mitochondrial proteins that were previously thought to be uncommon by using lectin chromatography on bovine heart samples.
  • The proteins identified include key players like pyruvate dehydrogenase and ATP synthase, which are essential for mitochondrial function and energy production.
  • This study suggests glycosylation might be a new way to regulate how these proteins work, both inside mitochondria and at other locations outside of them.

Article Abstract

Nucleocytosolic and secreted proteins are commonly glycosylated. However, reports of glycosylated mitochondrial proteins are rare. Using lectin chromatography on bovine heart, we detected low-abundance glycoforms of nuclear-encoded proteins with well-established mitochondrial function: pyruvate dehydrogenase E1α, NADH dehydrogenase [ubiquinone] iron-sulfur protein 3, ADP/ATP translocase, ATP synthase d and oligomycin sensitivity-conferring protein. Notably, the latter two have been previously detected at the plasma membrane. Our findings indicate that glycosylation of classic mitochondrial proteins may be more common than previously appreciated. We discuss the implication that glycosylation could represent an unexplored mechanism for regulating these proteins' functions within mitochondria or at extra-mitochondrial locations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3595188PMC
http://dx.doi.org/10.1016/j.mito.2012.04.004DOI Listing

Publication Analysis

Top Keywords

mitochondrial proteins
8
multiple proteins
4
proteins essential
4
mitochondrial
4
essential mitochondrial
4
mitochondrial functions
4
functions glycosylated
4
glycosylated isoforms
4
isoforms nucleocytosolic
4
nucleocytosolic secreted
4

Similar Publications

Trehalose has neuroprotective effects in neurodegenerative diseases. This study aimed to explore the impact of trehalose on traumatic brain injury (TBI) by investigating its role in neuroprotection. The TBI mice model was established utilizing the cortical impact technique followed by trehalose treatment.

View Article and Find Full Text PDF

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.

Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.

Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.

View Article and Find Full Text PDF

The Receptor for Advanced Glycation End Products (RAGE), part of the immunoglobulin superfamily, plays a significant role in various essential functions under both normal and pathological conditions, especially in the progression of Alzheimer's disease (AD). RAGE engages with several damage-associated molecular patterns (DAMPs), including advanced glycation end products (AGEs), beta-amyloid peptide (Aβ), high mobility group box 1 (HMGB1), and S100 calcium-binding proteins. This interaction impairs the brain's ability to clear Aβ, resulting in increased Aβ accumulation, neuronal injury, and mitochondrial dysfunction.

View Article and Find Full Text PDF

Plant secondary metabolites (PSMs) are a diverse group of bioactive compounds, including flavonoids, polyphenols, saponins, and terpenoids, which have been recognised for their critical role in modulating cellular functions. This review provides a comprehensive analysis of the effects of PSMs on mitochondrial health, with particular emphasis on their therapeutic potential. Emerging evidence shows that these metabolites improve mitochondrial function by reducing oxidative stress, promoting mitochondrial biogenesis, and regulating key processes such as apoptosis and mitophagy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!