AI Article Synopsis

  • The malaria parasite Plasmodium, particularly in sub-Saharan Africa, presents a significant public health challenge due to its complex biology and the difficulty in developing control strategies.
  • Researchers found that Plasmodium species can process plasma kininogen to release vasoactive peptides, which could affect blood flow during acute malaria.
  • The study also identified specific proteases in Plasmodium falciparum that produce these peptides, suggesting a new understanding of how malaria can influence host physiology.

Article Abstract

Background: The malaria burden remains a major public health concern, especially in sub-Saharan Africa. The complex biology of Plasmodium, the apicomplexan parasite responsible for this disease, challenges efforts to develop new strategies to control the disease. Proteolysis is a fundamental process in the metabolism of malaria parasites, but roles for proteases in generating vasoactive peptides have not previously been explored.

Results: In the present work, it was demonstrated by mass spectrometry analysis that Plasmodium parasites (Plasmodium chabaudi and Plasmodium falciparum) internalize and process plasma kininogen, thereby releasing vasoactive kinins (Lys-BK, BK and des-Arg9-BK) that may mediate haemodynamic alterations during acute malaria. In addition, it was demonstrated that the P. falciparum cysteine proteases falcipain-2 and falcipain-3 generated kinins after incubation with human kininogen, suggesting that these enzymes have an important role in this process. The biologic activity of peptides released by Plasmodium parasites was observed by measuring ileum contraction and activation of kinin receptors (B1 and B2) in HUVEC cells; the peptides elicited an increase in intracellular calcium, measured by Fluo-3 AM fluorescence. This effect was suppressed by the specific receptor antagonists Des-Arg9[Leu8]-BK and HOE-140.

Conclusions: In previously undescribed means of modulating host physiology, it was demonstrated that malaria parasites can generate active kinins by proteolysis of plasma kininogen.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3407703PMC
http://dx.doi.org/10.1186/1475-2875-11-156DOI Listing

Publication Analysis

Top Keywords

malaria parasites
12
active kinins
8
plasmodium parasites
8
plasma kininogen
8
malaria
5
parasites
5
plasmodium
5
intracellular proteolysis
4
kininogen
4
proteolysis kininogen
4

Similar Publications

Malaria vaccines consisting of metabolically active Plasmodium falciparum (Pf) sporozoites can offer improved protection compared with currently deployed subunit vaccines. In a previous study, we demonstrated the superior protective efficacy of a three-dose regimen of late-arresting genetically attenuated parasites administered by mosquito bite (GA2-MB) compared with early-arresting counterparts (GA1-MB) against a homologous controlled human malaria infection. Encouraged by these results, we explored the potency of a single GA2-MB immunization in a placebo-controlled randomized trial.

View Article and Find Full Text PDF

Very low prevalence of Plasmodium falciparum histidine-rich protein 2 (pfhrp2) gene deletion in the Brazil, Venezuela, and Guyana tri-border.

Sci Rep

January 2025

Molecular Biology and Malaria Immunology Research Group, Instituto René Rachou (IRR), Fundação Oswaldo Cruz (FIOCRUZ), Minas Gerais, Brazil.

Rapid Diagnostic Tests (RDTs) have been an important diagnostic tool for detecting P. falciparum malaria in resource-limited settings. Most tests are designed to detect the Histidine-rich Protein 2 (HRP2).

View Article and Find Full Text PDF

The significance of multiplication rate variation in malaria parasites needs to be determined, particularly for Plasmodium falciparum, the species that causes most virulent infections. To investigate this, parasites from cases presenting to hospital in The Gambia and from local community infections were culture-established and then tested under exponential growth conditions in a standardised six-day multiplication rate assay. The multiplication rate distribution was lower than seen previously in clinical isolates from another area in West Africa where infection is more highly endemic.

View Article and Find Full Text PDF

Factors associated with contracting border malaria: A systematic and meta-analysis.

PLoS One

January 2025

School of Nursing and Public Health, College of Health Sciences, Howard College Campus, University of KwaZulu-Natal, Durban, South Africa.

Vector resistance, human population movement, and cross-border malaria continue to pose a threat to the attainment of malaria elimination goals. Border malaria is prominent in border regions characterised by poor access to health services, remoteness, and vector abundance. Human socio-economic behaviour, vectoral behaviour, access and use of protective methods, age, sex, and occupation have been identified in non-border regions as key predictors for malaria.

View Article and Find Full Text PDF

Repellency and toxicity of long-lasting insecticide-treated bed nets (LLINs) to bed bugs.

PLoS One

January 2025

Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, North Carolina, United States of America.

Vector control is essential for eliminating malaria, a vector-borne parasitic disease responsible for over half a million deaths annually. Success of vector control programs hinges on community acceptance of products like long-lasting insecticide-treated nets (LLINs). Communities in malaria-endemic regions often link LLIN efficacy to their ability to control indoor pests such as bed bugs (Cimex lectularius L.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!