Aims: Hypnotic zolpidem is a positive allosteric modulator of γ-aminobutyric acid (GABA) action, with preferential although not exclusive binding for α1 subunit-containing GABA(A) receptors. The pharmacological profile of this drug is different from that of classical benzodiazepines, although it acts through benzodiazepine binding sites at GABA(A) receptors. The aim of this study was to further explore the molecular mechanisms of GABA(A) receptor induction by zolpidem.

Main Methods: In the present study, we explored the effects of two-day zolpidem (10 μM) treatment on GABA(A) receptors on the membranes of rat cerebellar granule cells (CGCs) using [(3)H]flunitrazepam binding and semi-quantitative PCR analysis.

Key Findings: Two-day zolpidem treatment of CGCs did not significantly affect the maximum number (B(max)) of [(3)H]flunitrazepam binding sites or the expression of α1 subunit mRNA. However, as shown by decreased GABA [(3)H]flunitrazepam binding, two-day exposure of CGCs to zolpidem caused functional uncoupling of GABA and benzodiazepine binding sites at GABA(A) receptor complexes.

Significance: If functional uncoupling of GABA and benzodiazepine binding sites at GABA(A) receptors is the mechanism responsible for the development of tolerance following long-term administration of classical benzodiazepines, chronic zolpidem treatment may induce tolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.lfs.2012.04.021DOI Listing

Publication Analysis

Top Keywords

gabaa receptors
20
binding sites
16
zolpidem treatment
12
benzodiazepine binding
12
sites gabaa
12
[3h]flunitrazepam binding
12
treatment gabaa
8
cerebellar granule
8
granule cells
8
classical benzodiazepines
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!