Our previous studies have shown good biocompatibility of fluorapatite (FA) crystal surfaces in providing a favorable environment for functional cell-matrix interactions of human dental pulp stem cells (DPSCs) and also in supporting their long-term growth. The aim of the current study was to further investigate whether this enamel-like surface can support the differentiation and mineralization of DPSCs, and, therefore, act as a potential model for studying the enamel/dentin interface and, perhaps, dentine/pulp regeneration in tooth tissue engineering. The human pathway-focused osteogenesis polymerase chain reaction (PCR) array demonstrated that the expression of osteogenesis-related genes of human DPSCs was increased on FA surfaces compared with that on etched stainless steel (SSE). Consistent with the PCR array, FA promoted mineralization compared with the SSE surface with or without the addition of a mineralization promoting supplement (MS). This was confirmed by alkaline phosphatase (ALP) staining, Alizarin red staining, and tetracycline staining for mineral formation. In conclusion, FA crystal surfaces, especially ordered (OR) FA surfaces, which mimicked the physical architecture of enamel, provided a favorable extracellular matrix microenvironment for the cells. This resulted in the differentiation of human DPSCs and mineralized tissue formation, and, thus, demonstrated that it may be a promising biomimetic model for dentin-pulp tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3483051PMC
http://dx.doi.org/10.1089/ten.TEC.2011.0624DOI Listing

Publication Analysis

Top Keywords

differentiation mineralization
8
dental pulp
8
pulp stem
8
stem cells
8
crystal surfaces
8
tissue engineering
8
pcr array
8
human dpscs
8
surfaces
5
vitro differentiation
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!