Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In bone tissue engineering, growth factors are widely used. Bone morphogenetic proteins (BMPs) and vascular endothelial growth factor (VEGF) are the most well-known regulators of osteogenesis and angiogenesis. We investigated whether the timing of dual release of VEGF and BMP-2 influences the amount of bone formation in a large-animal model. Poly(lactic-co-glycolic acid) (PLGA) microparticles (MPs) were loaded with BMP-2 or VEGF to create sustained-release profiles, and rapidly degrading gelatin was loaded with either growth factor for fast-release profiles. To study in vivo osteogenicity, the two delivery vehicles were combined with biphasic calcium phosphate (BCP) scaffolds and implanted in 10 Beagle dogs for 9 weeks, at both ectopic (paraspinal muscles) and orthotopic sites (critical-size ulnar defect). The 9 ectopic groups contained combined or single BMP/VEGF dosage, in sustained- or fast-release profiles. In the ulnae of 8 dogs, fast VEGF and sustained BMP-2 were applied to one leg, and the other received the opposite release profiles. The two remaining dogs received bilateral control scaffolds. Bone growth dynamics was analyzed by fluorochrome injection at weeks 3, 5, and 7. Postoperative and posteuthanization X-rays of the ulnar implants were taken. After 9 weeks of implantation, bone quantity and bone growth dynamics were studied by histology, histomorphometry, and fluorescence microscopy. The release of the growth factors resulted in both enhanced orthotopic and ectopic bone formation. Bone formation started before 3 weeks and continued beyond 7 weeks. The ectopic BMP-2 fast groups showed significantly more bone compared to sustained release, independent of the VEGF profile. The ulna implants revealed no significant differences in the amount of bone formed. This study shows that timing of BMP-2 release largely determines speed and amount of ectopic bone formation independent of VEGF release. Furthermore, at the orthotopic site, no significant effect on bone formation was found from a timed release of growth factors, implicating that timed-release effects are location dependent.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3463278 | PMC |
http://dx.doi.org/10.1089/ten.TEA.2011.0560 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!