Context: Anaplastic thyroid cancer cells are characterized by a mesenchymal phenotype, as revealed by spindle-shaped cells and absent or reduced levels of E-cadherin. Epigenetic silencing is considered one of the leading mechanisms of E-cadherin impairment, which causes the acquisition of the invasive and metastatic phenotype of anaplastic thyroid cancer.

Objectives: In this study we investigated the effects of histone deacetylase inhibition on E-cadherin expression, cell motility, and invasion in anaplastic thyroid cancer cell cultures.

Design: Three stabilized cell lines and primary cultures of anaplastic thyroid cancer were treated with various histone deacetylase inhibitors. After treatment, we evaluated histone acetylation by Western blotting and E-cadherin expression by RT-real time PCR. The proper localization of E-cadherin/β-catenin complex was assessed by immunofluorescence and Western blot. Transcription activity of β-catenin was measured by luciferase reporter gene and cyclin D1 expression. The effect on cell motility and invasion was studied both in vitro using scratch-wound and transwell invasion assays and in anaplastic thyroid carcinomas tumor xenografts in mice in vivo.

Results: Histone deacetylase inhibition induced the E-cadherin expression and the proper membrane localization of the E-cadherin/β-catenin complex, leading to reduced cancer cell migration and invasion.

Conclusions: We here demonstrate an additional molecular mechanism for the anticancer effect of histone deacetylase inhibition. The antiinvasive effect in addition to the cytotoxic activity of histone deacetylase inhibitors opens up therapeutic perspectives for the anaplastic thyroid tumor that does not respond to conventional therapy.

Download full-text PDF

Source
http://dx.doi.org/10.1210/jc.2011-2970DOI Listing

Publication Analysis

Top Keywords

anaplastic thyroid
28
histone deacetylase
24
deacetylase inhibition
16
e-cadherin expression
16
thyroid cancer
16
invasion anaplastic
8
cancer cells
8
expression cell
8
cell motility
8
motility invasion
8

Similar Publications

Anaplastic Thyroid Cancer (ATC) is an aggressive form of cancer with poor prognosis, heavily influenced by its tumor immune microenvironment (TIME). Understanding the cellular and gene expression dynamics within the TIME is crucial for developing targeted therapies. This study analyzes the immune microenvironment of ATC and Papillary Thyroid Cancer (PTC) using single-cell RNA sequencing (scRNA-seq).

View Article and Find Full Text PDF

This review focuses on the latest advancements in using biomarkers to diagnose, predict outcomes, and guide the treatment of different types of thyroid cancer, such as anaplastic, papillary, medullary, and follicular thyroid carcinoma. We highlight the key role of both traditional and new biomarkers in improving the treatment of these cancers. For anaplastic thyroid cancer, biomarkers are crucial for detecting distant metastases and making treatment decisions.

View Article and Find Full Text PDF

Background: Anaplastic thyroid cancer (ATC) is a highly lethal form of thyroid cancer. lysine acetyltransferase 5 (KAT5) has been found to promote ATC development via c-Myc stabilization by previous study. We thus designed experiments to confirm the anti-tumor effect of a KAT5 inhibitor (MG149) in ATC.

View Article and Find Full Text PDF

Anillin interacts with RhoA to promote tumor progression in anaplastic thyroid cancer by activating the PI3K/AKT pathway.

Endocrine

December 2024

Department of General Surgery, Nanfang Hospital, The First School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.

Background: Anaplastic thyroid cancer (ATC) is the most aggressive thyroid malignancy and has an extremely poor prognosis, necessitating novel therapeutic strategies. This study investigated the role of anillin (ANLN) in ATC, focusing on its impact on tumor growth and metastasis through the RhoA/PI3K/AKT signaling pathway.

Methods: TCGA and GEO datasets were analyzed to identify key molecular alterations in thyroid cancer.

View Article and Find Full Text PDF

Background: Anaplastic Lymphoma Kinase (ALK) rearrangement is a rare alteration in differentiated thyroid carcinomas (DTCs). Due to its low prevalence, a few evidence are available about the use of ALK inhibitors in advanced DTCs.

Methods: We report the case of a striatin (STRN) - ALK translocated advanced thyroid carcinoma.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!