Healthcare has made great efforts to reduce preventable patient harm, from externally driven regulations to internally driven professionalism. Regulation has driven the majority of efforts to date, and has a necessary place in establishing accountability and minimum standards. Yet they need to be coupled with internally driven efforts. Among professional groups, internally-driven efforts that function as communities of learning and change social norms are highly effective tools to improve performance, yet these approaches are underdeveloped in healthcare. Healthcare can learn much from the nuclear power industry. The nuclear power industry formed the Institute of Nuclear Power Operators following the Three Mile Island accident to improve safety. That organization established a peer-to-peer assessment program to cross-share best practices, safety hazards, problems and actions that improved safety and operational performance. This commentary explores how a similar program could be expanded into healthcare. Healthcare needs a structured, clinician-led, industry-wide process to openly review, identify and mitigate hazards, and share best practices that ultimately improve patient safety. A healthcare version of the nuclear power program could supplement regulatory and other strategies currently used to improve quality and patient safety.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3461646PMC
http://dx.doi.org/10.1136/bmjqs-2011-000470DOI Listing

Publication Analysis

Top Keywords

nuclear power
20
power industry
12
peer-to-peer assessment
8
internally driven
8
healthcare healthcare
8
best practices
8
patient safety
8
healthcare
6
nuclear
5
power
5

Similar Publications

Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.

View Article and Find Full Text PDF

Silicon carbide-based titanium silicon carbide (SiC-TiSiC) composites with low free alloy content and varying TiSiC contents are fabricated by two-step reactive melt infiltration (RMI) thorough complete reactions between carbon and TiSi alloy in SiC-C preforms obtained. The densities of SiC-C preform are tailored by the carbon morphology and volumetric shrinkage of slurry during the gel-casting process, and pure composites with variable TiSiC volume contents are successfully fabricated with different carbon contents of the preforms. Due to the increased TiSiC content in the obtained composites, both electrical conductivity and electromagnetic interference (EMI) shielding effectiveness improved progressively, while skin depth exhibited decreased consistently.

View Article and Find Full Text PDF

Sr and Cs distribution in Chornobyl forests: 30 years after the nuclear accident.

J Environ Radioact

January 2025

Savannah River Ecology Laboratory, Warnell School of Forestry and Natural Resources, University of Georgia, Aiken, SC, USA.

The primary aim of this study was to quantify patterns in the distribution of Sr and Cs activity in pine (Pinus sylvestris L.: 18 sites) and birch (Betula pendula Roth.: 2 sites) forests within the Chornobyl exclusion zone, 30 years after the Chornobyl nuclear power plant (NPP) accident (1986).

View Article and Find Full Text PDF

High-performance and cost-effective hole-collecting materials (HCMs) are indispensable for commercially viable perovskite solar cells (PSCs). Here, we report an anchorable HCM composed of a triazatruxene core connected with three alkyl carboxylic acid groups (). In contrast to the phosphonic acid-containing tripodal analog (), molecules can form a hydrophilic monolayer on a transparent conducting oxide surface, which is beneficial for subsequent perovskite film deposition in the traditional layer-by-layer fabrication process.

View Article and Find Full Text PDF

The Fukushima Daiichi Nuclear Power Station accident underscored the critical role of public health nurses (PHNs) in managing evacuees during nuclear emergencies. Despite their importance, PHNs often lack sufficient knowledge and experience, which may make them anxious about this role. This study aimed to investigate the factors associated with PHNs' anxiety about accepting evacuees and identify strategies to alleviate this anxiety.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!