Are humans unique in their ability to interpret exogenous events as causes? We addressed this question by observing the behavior of rats for indications of causal learning. Within an operant motor-sensory preconditioning paradigm, associative surgical techniques revealed that rats attempted to control an outcome (i.e., a potential effect) by manipulating a potential exogenous cause (i.e., an intervention). Rats were able to generate an innocuous auditory stimulus. This stimulus was then paired with an aversive stimulus. The animals subsequently avoided potential generation of the predictive cue, but not if the aversive stimulus was subsequently devalued or the predictive cue was extinguished (Exp. 1). In Experiment 2, we demonstrated that the aversive stimulus we used was in fact aversive, that it was subject to devaluation, that the cue-aversive stimulus pairings did make the cue a conditioned stimulus, and that the cue was subject to extinction. In Experiments 3 and 4, we established that the decrease in leverpressing observed in Experiment 1 was goal-directed instrumental behavior rather than purely a product of Pavlovian conditioning. To the extent that interventions suggest causal reasoning, it appears that causal reasoning can be based on associations between contiguous exogenous events. Thus, contiguity appears capable of establishing causal relationships between exogenous events. Our results challenge the widely held view that causal learning is uniquely human, and suggest that causal learning is explicable in an associative framework.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13420-012-0075-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!