AI Article Synopsis

  • This study examines the health effects of occupational exposure to Bisphenol A (BPA) among workers in epoxy resin factories in China.
  • Urinary BPA concentrations were measured, revealing that feeding operators had the highest levels, significantly higher than other workers, and these levels correlated with abnormal thyroid and liver function markers.
  • The findings suggest that increased BPA exposure may disrupt thyroid hormone levels among factory workers.

Article Abstract

Objectives: Bisphenol A (BPA) is widely used in epoxy resins in China. There are few reports on the adverse health effects of occupational exposure to BPA. This study examined associations between urinary BPA concentrations in workers and laboratory parameters for health status.

Methods: Spot urine checks at the end shift on Friday were used for cross-sectional analysis of BPA concentrations, and blood or urinary markers of liver function, glucose homeostasis, thyroid function and cardiovascular diseases were measured. The 28 participants were workers in two semiautomatic epoxy resin factories.

Results: The average urinary BPA concentration was 55.73±5.48 ng/ml (geometric mean ± geometric SD) (range 5.56-1934.85 ng/ml). After adjusting for urine creatinine (Cr), it was 31.96±4.42 μg/g Cr (geometric mean ± geometric SD) (range 4.61-1253.69 μg/g Cr). BPA feeding operators showed the highest concentrations, over 10 times those of the crushing and packing and office workers. Higher BPA concentrations were associated with clinically abnormal concentrations of FT3, FT4, TT3, TT4, thyroid-stimulating hormone, glutamic-oxaloacetic transaminase and γ-glutamyl transferase. Workers with higher BPA concentrations showed higher FT3 concentrations (linear trend: p<0.001). Bivariate correlation tests for laboratory analytes within normal limits showed FT3 to be positively associated with logged BPA concentrations, r=0.57, p=0.002. FT4 was positively associated with lactate dehydrogenase, r=0.45, p=0.020, and insulin was positively associated with thyroid-stimulating hormone with r=0.57, p=0.009.

Conclusions: Higher occupational BPA exposure, reflected in urinary concentrations of BPA, may be associated with thyroid hormone disruption.

Download full-text PDF

Source
http://dx.doi.org/10.1136/oemed-2011-100529DOI Listing

Publication Analysis

Top Keywords

bpa concentrations
16
concentrations
8
concentrations workers
8
workers laboratory
8
bpa
8
urinary bpa
8
geometric geometric
8
geometric range
8
workers higher
8
higher bpa
8

Similar Publications

Bisphenol A degradation by manganese oxides at circumneutral pH: Quantitative evaluation of dissolved Mn(III) species with pyrophosphate.

J Hazard Mater

December 2024

Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Institute of Eco-Chongming, Fudan University, Shanghai 200062, China; Institute of Atmospheric Sciences, Fudan University, Shanghai 200438,  China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China. Electronic address:

Although trivalent manganese (Mn(III)) species have been recognized as crucial intermediates in the degradation of organic contaminants by Mn oxides, quantitative research on their specific roles remains scarce. Our study investigated the degradation processes of an organic pollutant, Bisphenol A (BPA), by dissolved Mn(III) and Mn(III)-bearing oxides, and elucidated the differences of the underlying mechanisms and reaction pathways between several Mn oxides and dissolved Mn(III). Our results indicated that BPA degradation rates with Mn(III)-bearing oxides alone follow the order: δ-MnO ≫ γ-MnOOH > MnO.

View Article and Find Full Text PDF

Enhanced tetracycline degradation using carbonized PEI-grafted lignin microspheres supported Fe-loading catalyst across a wide pH range in Fenton-like reactions.

Int J Biol Macromol

December 2024

School of Chemistry & Chemical Engineering, Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, 100 Daxuedong Road, Nanning 530004, China. Electronic address:

Traditional homogeneous Fenton systems face limitations, including a narrow pH range, potential secondary pollution, and poor repeatability. In this study, these bottlenecks in tetracycline wastewater treatment were addressed with using carbonized porous polyethyleneimine-grafted lignin microspheres (PLMs) supported Fe-loading catalysts (PLMs/Fe-C). An optimized PLMs/Fe-C catalyst under specific conditions (carbonization temperature: 350 °C, PLMs: Fe = 1:1, and alkali lignin: PEI = 1:4) was developed, which proved to be an efficient Fenton-like catalyst for tetracycline (TC) degradation.

View Article and Find Full Text PDF

Bisphenol A (BPA) is a chemical produced in large quantities for use primarily in the production of polycarbonate plastics, which has risks for human health. This study aimed to investigate BPA contents in canned fruit and vegetable samples using Gas Chromatography-Mass Spectrometry (GC-MS). Furthermore, health risks were assessed for Iranian adults and children using Monte Carlo simulations.

View Article and Find Full Text PDF

Nanoplastics are known to represent a threat to marine ecosystems. Their combination with other contaminants of emerging concerns (CECs) may amplify ecotoxic effects, with unknown impacts on marine biodiversity. This study investigates the effects, single and combined, of bisphenol A (BPA)-one of the most hazardous CECs-and polystyrene nanoparticles (PS NPs)-as a proxy for nanoplastics, being among the most commonly found asmarine debris-on cholinesterase (ChE) activities of the ascidian .

View Article and Find Full Text PDF

Bisphenol A (BPA) is a high-production-volume plastic chemical, with ∼98% of its usage in China allocated to producing polycarbonate and epoxy resin, and its fugitive release threatens ecosystems. However, knowledge of its anthropogenic cycles, environmental emissions, and ecological risks remains incomplete, hindering effective plastic lifecycle management. Herein, material flow analysis, multimedia environmental modeling, and ecological risk assessment were integrated to comprehensively map BPA dynamics in China.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!