The effect of the calcium antagonists cepharanthine and verapamil on adriamycin-induced cytotoxicity against sensitive (K 562 and Ov 2780) and resistant (K 562/ADM and AD 10) sublines of human tumor cells was evaluated. Nontoxic concentrations of cepharanthine moderately enhanced adriamycin cytotoxicity against sensitive sublines (2.1-2.5 fold). A significant enhancement (13-26 fold) of drug cytotoxicity was observed when resistant cells were treated with a combination of cepharanthine and adriamycin. The calcium influx blocker verapamil (used for comparison) also enhanced adriamycin cytotoxicity, although to a lesser extent. The fact that enhancement was 6-10 fold greater in resistant then in sensitive cells, as well as the loss of biphasic properties of adriamycin on dose-response curves after combined treatment, indicate that cepharanthine may play a role in overcoming drug resistance in some tumor cells.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/030089169007600506 | DOI Listing |
Integr Cancer Ther
January 2025
National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt.
Objectives: Hepatocellular carcinoma (HCC) represents the third-most prevalent cancer in humans worldwide. The current study's objective is to search for the potentiality of H. Wendl () leaf extract in a nanoemulsion (NE) form in enhancing radiotherapy against HCC induced in rats using diethylnitrosamine (DEN).
View Article and Find Full Text PDFFront Mol Biosci
January 2025
Department of Medicinal Chemistry, College of Pharmacy, University of Sharjah, Sharjah, United Arab Emirates.
Background: Breast cancer is one of the most prevalent malignancies and a leading cause of death among women worldwide. Among its subtypes, triple-negative breast cancer (TNBC) poses significant clinical challenges due to its aggressive behavior and limited treatment options. This study aimed to investigate the effects of doxorubicin (DOX) and 5-fluorouracil (5-FU) as monotherapies and in combination using an established MDA-MB-231 xenograft model in female BALB/C nude mice employing advanced metabolomics analysis to identify molecular alterations induced by these treatments.
View Article and Find Full Text PDFInt J Nanomedicine
January 2025
Department of Pharmacy, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, 646000, People's Republic of China.
Background: Melanoma is an aggressive form of skin cancer, and single-modality treatments often fail to prevent tumor recurrence and metastasis. Combination therapy has emerged as an effective approach to improve treatment outcomes.
Methods: In this study, we developed a multifunctional nanoplatform, MIL@DOX@ICG, utilizing MIL-101-NH(Fe) as a carrier to co-deliver the chemotherapeutic agent doxorubicin (DOX) and the photosensitizer indocyanine green (ICG).
Heliyon
January 2025
Department of Microbiology, Immunology and Biopharmaceuticals, College of Life Sciences, National Chiayi University, Chiayi City, Taiwan.
Bladder cancer ranks as the 9th most common type of cancer worldwide. Approximately 70 % of bladder cancers are diagnosed as non-muscle invasive, and they are treated with transurethral resection followed by intravesical therapy. Doxorubicin is one of the effective cytotoxic drugs used in intravesical and systemic therapy, but its cardiotoxicity and nephrotoxicity limit therapeutic dosages.
View Article and Find Full Text PDFTechnol Cancer Res Treat
January 2025
Cell Therapy Center, The University of Jordan, Amman, Jordan.
Background: Doxorubicin (DOX) is a potent chemotherapeutic agent for breast cancer, but its effectiveness is often diminished by resistance mechanisms, particularly through p-glycoprotein (P-gp) mediated drug efflux. Clarithromycin (CAM), a macrolide antibiotic, inhibits multiple metabolic pathways including CYP3A and P-gp, potentially countering DOX resistance.
Objective: This study aimed to evaluate the potentiation of DOX and its effectiveness against the MCF-7 breast cancer cell line by encapsulating both DOX and CAM in PEGylated liposomes.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!