7 Methyl indole ethyl isothiocyanate causes ROS mediated apoptosis and cell cycle arrest in endometrial cancer cells.

Gynecol Oncol

Molecular Therapeutics Laboratory, Program in Women's Oncology, Department of Obstetrics and Gynecology, Women and Infants Hospital of Rhode Island, Alpert Medical School, Brown University, Providence, RI 02905, USA.

Published: August 2012

AI Article Synopsis

  • The study explores the potential of 7 Methyl-indole ethyl isothiocyanate (7Me-IEITC) as a treatment for advanced endometrial cancer, highlighting the need for new therapies.
  • 7Me-IEITC was found to significantly reduce the viability of endometrial cancer cell lines (ECC-1 and KLE) through mechanisms involving apoptosis and mitochondrial dysfunction.
  • The compound's effect was linked to oxidative stress and specific changes in protein expression, indicating its cytotoxicity may be primarily due to ROS production, suggesting further research is warranted.

Article Abstract

Objective: Chemotherapy options for advanced endometrial cancer are limited and newer therapeutic agents are urgently needed. This study describes the therapeutic potential of 7 Methyl-indole ethyl isothiocyanate (7Me-IEITC) in endometrial cancer cell lines.

Methods: 7Me-IEITC was synthesized in our laboratory. The cell viability of 7Me-IEITC treated ECC-1 and KLE endometrial cancer cell was determined by MTS assay. Morphology and apoptosis were further confirmed by DAPI-staining and TUNEL assay. The measurement of reactive oxygen species (ROS), mitochondrial transmembrane depolarization potential (ΔΨm) and cell cycle phase was determined by FACS analysis. Expression of proteins involved in apoptosis, survival and cell-cycle progression was analyzed by Western blotting.

Results: 7Me-IEITC reduced the viability of the ECC-1 and KLE cancer cell-lines (IC(50)~2.5-10 μM) in a dose dependent fashion. 7Me-IEITC treatment caused mitochondrial transmembrane potential reduction, elevated the production of ROS, leading to activation of apoptosis in endometrial cancer KLE and ECC-1 cells. 7Me-IEITC treatment activated Bad, suppressed Bcl2 phosphorylation followed by PARP-1 deactivation and caspase 3 and 7 activation. 7Me-IEITC treatment arrested the progression of KLE cells in S-phase and caused CDC25 and cyclin-D1 downregulation. Pre-treatment with ascorbic acid abrogated 7Me-IEITC induced apoptosis in ECC-1 and KLE cells, suggesting that 7Me-IEITC mediated cytotoxicity is primarily through ROS production.

Conclusion: 7Me-IEITC demonstrated promising cytotoxic effects in endometrial cancer cell line model.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ygyno.2012.04.041DOI Listing

Publication Analysis

Top Keywords

endometrial cancer
24
cancer cell
12
ecc-1 kle
12
7me-ieitc treatment
12
7me-ieitc
10
ethyl isothiocyanate
8
cell cycle
8
mitochondrial transmembrane
8
kle cells
8
cancer
7

Similar Publications

Overall and late mortality among 24 459 survivors of adolescent and young adult cancer in Alberta, Canada: a population-based cohort study.

Lancet Public Health

January 2025

Department of Oncology, University of Calgary, Calgary, AB, Canada; Department of Community Health Sciences, University of Calgary, Calgary, AB, Canada; Department of Cancer Epidemiology and Prevention Research, Cancer Care Alberta, Alberta Health Services, Arthur Child Comprehensive Cancer Centre, Calgary, AB, Canada. Electronic address:

Background: Adolescent and young adult (AYA) cancer survivors are at an increased risk of premature mortality due to their cancer and its treatment. Herein, we aimed to quantify the excess risks of mortality among AYA cancer survivors and identify target populations for intervention.

Methods: The Alberta AYA Cancer Survivor Study is a retrospective, population-based cohort of individuals diagnosed with a first primary neoplasm at age 15-39 years in Alberta, Canada, between 1983 and 2017.

View Article and Find Full Text PDF

Nanotechnology and nanobots unleashed: pioneering a new era in gynecological cancer management - a comprehensive review.

Cancer Chemother Pharmacol

January 2025

Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, Bibinagar, Hyderabad, Telangana, 508126, India.

Introduction: Gynecological cancers, such as ovarian, cervical, and endometrial malignancies, are notoriously challenging due to their intricate biology and the critical need for precise diagnostic and therapeutic approaches. In recent years, groundbreaking advances in nanotechnology and nanobots have emerged as game-changers in this arena, offering the promise of a new paradigm in cancer management. This comprehensive review delves into the revolutionary potential of these technologies, showcasing their ability to transform the landscape of gynecological oncology.

View Article and Find Full Text PDF

Understanding the impact of spatial immunophenotypes on the survival of endometrial cancer patients through the ProMisE classification.

Cancer Immunol Immunother

January 2025

Department of Obstetrics and Gynecology, Graduate School of Medicine, Nagoya University, 65, Tsurumai-Cho, Showa-Ku, Nagoya, Aichi, 466-8560, Japan.

Objectives: We focused on how the immunophenotypes based on the distribution of CD8-positive tumor-infiltrating lymphocytes (TILs) relate to the endometrial cancer (EC) molecular subtypes and patients' prognosis.

Patients And Methods: Two cohorts of EC patients (total n = 145) were analyzed and categorized using the Molecular Risk Classifier for Endometrial cancer (ProMisE): POLEmut (POLE mutation), MMRd (mismatch repair deficiency), NSMP (no specific molecular profile), and p53abn (p53 abnormality). CD8-positive TILs, within the central tumor and the invasive margin, were examined by using immunohistochemical staining and advanced image-analysis software.

View Article and Find Full Text PDF

[Mechanism of miR-200b-3p-induced FOSL2 inhibitorion of endometrial cancer cell proliferation and metastasis].

Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi

December 2024

Department of Clinical Laboratory, Tianjin Fifth Central Hospital, Tianjin 300450, China.

Objective The purpose of this study was to investigate how miR-200b-3p inhibitors the proliferation and metastasis of endometrial cancer(EC) cells by inducing the expression of FOS-like antigen 2(FOSL2) of activator protein 1(AP1) transcription family. Methods Endometrial cancer cell line HEC-1-A was divided into 12 groups: NC-mimic (transfected with negative control NC mimic), miR-200b-3p mimic (transfected with miR-200b-3p mimic), NC-inhibitor (transfected with negative control NC inhibitor), miR-200b-3p inhibitor group (transfected with miR-200b-3p inhibitor), si-NC (transfected with negative control Si-NC), si-FOSL2 (transfected with si-FOSL2), oe-NC (transfected with negative control oe-NC), oe-FOSL2 group (oe-FOSL2), miR-200b-3p mimic+oe-NC group (co-transfected with miR-200b-3p mimic and oe-NC), miR-200b-3p mimic+oe-FOSL2 group (co-transfected with miR-200b-3p mimic and oe-FOSL2), miR-200b-3p inhibitor+si-NC group (co-transfected with miR-200b-3p inhibitor and si-NC), miR-200b-3p inhibitor+si-FOSL2 group (co-transfected with miR-200b-3p inhibitor and si-FOSL2). Real-time fluorescence quantitative PCR, Western blot, CCK-8 assay, scratch test and Transwell assay were used to detect the expression of miR-200b-3p mRNA, FOSL2 mRNA and protein expression level, cell proliferation, migration and invasion.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!