The C-terminal α-helix of SPAS-1, a Caenorhabditis elegans spastin homologue, is crucial for microtubule severing.

J Struct Biol

Department of Molecular Cell Biology, Institute of Molecular Embryology and Genetics, Kumamoto University, 2-2-1 Honjo, Kumamoto 860-0811, Japan.

Published: August 2012

Spastin belongs to the meiotic subfamily, together with Vps4/SKD1, fidgetin and katanin, of AAA (ATPases associated with diverse cellular activities) proteins, and functions in microtubule severing. Interestingly, all members of this subgroup specifically contain an additional α-helix at the very C-terminal end. To understand the function of the C-terminal α-helix, we characterised its deletion mutants of SPAS-1, a Caenorhabditis elegans spastin homologue, in vitro and in vivo. We found that the C-terminal α-helix plays essential roles in ATP binding, ATP hydrolysing and microtubule severing activities. It is likely that the C-terminal α-helix is required for cellular functions of members of meiotic subgroup of AAA proteins, since the C-terminal α-helix of Vps4 is also important for assembly, ATPase activity and in vivo function mediated by ESCRT-III complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jsb.2012.04.010DOI Listing

Publication Analysis

Top Keywords

c-terminal α-helix
20
microtubule severing
12
spas-1 caenorhabditis
8
caenorhabditis elegans
8
elegans spastin
8
spastin homologue
8
c-terminal
6
α-helix
5
α-helix spas-1
4
homologue crucial
4

Similar Publications

How SNARE proteins generate force to fuse membranes.

Biophys J

January 2025

Department of Chemical Engineering, Columbia University, New York, NY 10027. Electronic address:

Membrane fusion is central to fundamental cellular processes such as exocytosis, when an intracellular machinery fuses membrane-enclosed vesicles to the plasma membrane for contents release. The core machinery components are the SNARE proteins. SNARE complexation pulls the membranes together, but the fusion mechanism remains unclear.

View Article and Find Full Text PDF

Under salt stress, plasma membrane proteins regulate ion homeostasis and the balance between reactive oxygen species (ROS). In this study, we investigated the functions of two small membrane proteins-MsRCI2B (tailless) and MsRCI2E (tailed)-encoded by the RCI2 (Rare Cold Inducible 2) gene family in Medicago sativa (alfalfa). We identified the distinct subcellular localization and expression patterns of these proteins under salt stress.

View Article and Find Full Text PDF

Thio/selenoimidazole Nπ-methyltransferases are an emerging family of enzymes catalyzing the final step in the production of the S/Se-containing histidine-derived antioxidants ovothiol and ovoselenol. These enzymes, prevalent in prokaryotes, show minimal sequence similarity to other methyltransferases, and the structural determinants of their reactivities remain poorly understood. Herein, we report ligand-bound crystal structures of OvsM from the ovoselenol pathway as well as a member of a previously unknown clade of standalone ovothiol-biosynthetic Nπ-methyltransferases, which we have designated OvoM.

View Article and Find Full Text PDF

The re-emergence of the mpox pandemic poses considerable challenges to human health and societal development. There is an urgent need for effective prevention and treatment strategies against the mpox virus (MPXV). In this study, we focused on the A35R protein and created a chimeric A35R-Fc protein by fusing the Fc region of IgG to its C-terminal.

View Article and Find Full Text PDF

Background: Marek's disease (MD) is a pathology affecting chickens caused by Marek's disease virus (MDV), an acute transforming alphaherpesvirus of the genus . MD is characterized by paralysis, immune suppression, and the rapid formation of T-cell (primarily CD4+) lymphomas. Over the last 50 years, losses due to MDV infection have been controlled worldwide through vaccination; however, these live-attenuated vaccines are non-sterilizing and potentially contributed to the virulence evolution of MDV field strains.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!