Production and characterization of poly(3-hydroxypropionate-co-4-hydroxybutyrate) with fully controllable structures by recombinant Escherichia coli containing an engineered pathway.

Metab Eng

MOE Key Lab of Bioinformatics, Department of Biological Science and Biotechnology, School of Life Science, Tsinghua-Peking Center for Life Sciences, Tsinghua University, Beijing 100084, China.

Published: July 2012

Copolyesters of 3-hydroxypropionate (3HP) and 4-hydroxybutyrate (4HB), abbreviated as P(3HP-co-4HB), was synthesized by Escherichia coli harboring a synthetic pathway consisting of five heterologous genes including orfZ encoding 4-hydroxybutyrate-coenzyme A transferase from Clostridium kluyveri, pcs' encoding the ACS domain of tri-functional propionyl-CoA ligase (PCS) from Chloroflexus aurantiacus, dhaT and aldD encoding dehydratase and aldehyde dehydrogenase from Pseudomonas putida KT2442, and phaC1 encoding PHA synthase from Ralstonia eutropha. When grown on mixtures of 1,3-propanediol (PDO) and 1,4-butanediol (BDO), compositions of 4HB in microbial P(3HP-co-4HB) were controllable ranging from 12 mol% to 82 mol% depending on PDO/BDO ratios. Nuclear magnetic resonance (NMR) spectra clearly indicated the polymers were random copolymers of 3HP and 4HB. Their mechanical and thermal properties showed obvious changes depending on the monomer ratios. Morphologically, P(3HP-co-4HB) films only became fully transparent when monomer 4HB content was around 67 mol%. For the first time, P(3HP-co-4HB) with adjustable monomer ratios were produced and characterized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ymben.2012.04.003DOI Listing

Publication Analysis

Top Keywords

escherichia coli
8
monomer ratios
8
production characterization
4
characterization poly3-hydroxypropionate-co-4-hydroxybutyrate
4
poly3-hydroxypropionate-co-4-hydroxybutyrate fully
4
fully controllable
4
controllable structures
4
structures recombinant
4
recombinant escherichia
4
coli engineered
4

Similar Publications

Study of the interaction between alkaline phosphatase and biomacromolecule substrates.

Anal Bioanal Chem

January 2025

Gene Engineering and Biotechnology of Beijing Key Laboratory, College of Life Sciences, Beijing Normal University, Beijing, 100875, China.

Alkaline phosphatase (ALP) is a nonspecific phosphatase, and its interaction with substrates mainly depends on the recognition of phosphate groups on the substrate. Previous enzymatic research has focused mainly on the enzymatic reaction kinetics of the inorganic small molecule p-nitrophenol phosphate (pNPP) as a substrate, but its interaction with biomacromolecule substrates has not been reported. In current scientific research, ALP is often used for molecular cloning, such as removing the 5' termini of nucleic acids.

View Article and Find Full Text PDF

Recent genome mining work revealed that unexplored habitats exhibit great potential for discovering new nonribosomal peptides (NRPs) and ribosomally synthesized and post-translationally modified peptides (RiPPs). Lanthipeptides are a group of RiPPs exhibiting a variety of biological functions. They are characterized by the presence of the thioether-containing bis-amino acids lanthionine and/or methyllanthionine.

View Article and Find Full Text PDF

Aims: To characterize Escherichia coli O25 ST131 (O25-ST131) isolated from Georgia poultry, - a "global high-risk" clonal strain.

Methods And Results: Using multiplex PCR to detect target genes in 98 isolates of avian pathogenic E. coli (APEC) O25 recovered from avians diagnosed with colibacillosis (n=87) and healthy chicks (n=11) in Georgia, USA.

View Article and Find Full Text PDF

In this study designed to isolate lactic acid bacteria (LAB) with bacteriocin production potential, white cheese samples were collected from different provinces of Turkey and isolation was carried out. A series of experiments were carried out for the main purpose and the actual bacteriocin producers were identified by detecting the genes encoding this bacteriocin. The experiments carried out in this direction were initially carried out with 20 isolates and as a result of various experiments, the number of isolates was reduced to 8 and the study was continued with 8 isolates.

View Article and Find Full Text PDF

Soluble starch/zinc oxide nanocomposites could be promising candidates for eco-friendly antimicrobial, food packaging, and a wide range of other utilization. In order to find a new way for the preparation of this kind of nanocomposites, an efficient and energy-saving reaction for the synthesis of soluble starch/zinc oxide nanocomposites has been investigated. The reaction was implemented in a solid state at room temperature without post-reaction calcination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!