Background: The lateral segregation of Ras proteins into transient plasma membrane nanoclusters is essential for high-fidelity signal transmission by the Ras mitogen-activated protein kinase (MAPK) cascade. In this spatially constrained signaling system, the dynamics of Ras nanocluster assembly and disassembly control MAPK signal output.

Results: We show here that BRaf inhibitors paradoxically activate CRaf and MAPK signaling in Ras transformed cells by profoundly dysregulating Ras nanocluster dynamics. Specifically, BRaf inhibitors selectively enhance the plasma membrane nanoclustering of oncogenic K-Ras and N-Ras but have no effect on H-Ras nanoclustering. Raf inhibitors are known to drive the formation of stable BRaf-CRaf and CRaf-CRaf dimers. Our results demonstrate that the presence of two Ras-binding domains in a single Raf dimer is sufficient and required to increase Ras nanoclustering, indicating that Raf dimers promote K- and N-Ras nanocluster formation by crosslinking constituent Ras proteins. Ras crosslinking increases the fraction of K-Ras and N-Ras in their cognate nanoclusters, leading to an increase in MAPK output from the plasma membrane. Intriguingly, increased MAPK signaling in BRaf inhibited cells is accompanied by significantly decreased Akt activation. We show that this signal pathway crosstalk results from a novel mechanism of competition between stabilized Raf dimers and p110α for recruitment to Ras nanoclusters.

Conclusions: Our findings reveal that BRaf inhibitors disrupt Ras nanocluster dynamics with significant, yet divergent, consequences for MAPK and PI3K signaling.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cub.2012.03.067DOI Listing

Publication Analysis

Top Keywords

plasma membrane
12
ras nanocluster
12
braf inhibitors
12
ras
11
raf inhibitors
8
ras proteins
8
nanocluster dynamics
8
k-ras n-ras
8
raf dimers
8
mapk
6

Similar Publications

Cystic Fibrosis (CF) is a life-threatening hereditary disease resulting from mutations in the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) gene that encodes a chloride channel essential for ion transport in epithelial cells. Mutations in CFTR, notably the prevalent F508del mutation, impair chloride transport, severely affecting the respiratory system and leading to recurrent infections. Recent therapeutic advancements include CFTR modulators such as ETI, a combination of two correctors (Elexacaftor and Tezacaftor) and a potentiator (Ivacaftor), that can improve CFTR function in patients with the F508del mutation.

View Article and Find Full Text PDF

Understanding the molecular mechanisms of abiotic stress responses in plants is instrumental for the development of climate-resilient crops. Key factors in abiotic stress responses, such as the proton- pumping pyrophosphatase (AVP1), have been identified, but their function and regulation remain elusive. Here, we explored the post-translational regulation of AVP1 by the ubiquitin-conjugating enzyme UBC34 and its relevance in the salt stress and phosphate starvation responses of Arabidopsis (Arabidopsis thaliana).

View Article and Find Full Text PDF

Mitochondrial Porin Is Required for Versatile Biocontrol Trait-Involved Biological Processes in a Filamentous Insect Pathogenic Fungus.

J Agric Food Chem

January 2025

Key Laboratory of Agricultural Biosafety and Green Production of Upper Yangtze River (Ministry of Education), College of Plant Protection, Southwest University, Chongqing 400715, China.

The mitochondrial voltage-dependent anion channel (VDAC) is the major channel in the mitochondrial outer membrane for metabolites and ions. VDACs also regulate a variety of biological processes, which vary in the number of VDAC isoforms across different eukaryotes. However, little is known about VDAC-mediated biocontrol traits in biocontrol fungi.

View Article and Find Full Text PDF

NIM-1324 is an oral investigational new drug for autoimmune disease that targets the Lanthionine Synthetase C-like 2 (LANCL2) pathway. Through activation of LANCL2, NIM-1324 modulates CD4+ T cells to bias signaling and cellular metabolism toward increased immunoregulatory function while providing similar support to phagocytes. In primary human immune cells, NIM-1324 reduces type I interferon and inflammatory cytokine (IL-6, IL-8) production.

View Article and Find Full Text PDF

Chemodynamic therapy (CDT) has garnered significant attention in the field of tumor therapy due to its ability to convert overexpressed hydrogen peroxide (HO) in tumors into highly toxic hydroxyl radicals (•OH) through metal ion-mediated catalysis. However, the effectiveness of CDT is hindered by low catalyst efficiency, insufficient intra-tumor HO level, and excessive glutathione (GSH). In this study, a pH/GSH dual responsive bimetallic nanocatalytic system (CuFeMOF@GOx@Mem) is developed by modifying red blood cell membranes onto glucose oxidase (GOx)-loaded Fe-Cu bimetallic MOFs, enhancing the efficacy of CDT through a triple-enhanced way by HO self-supply, catalysts self-cycling, and GSH self-elimination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!