The present study reports the development of an ionic silica based hybrid material containing the cationic pyridinium group, which was employed for the removal of the Reactive Red 194 textile dye from aqueous solution. Three hybrid material samples were prepared with planned textural and chemical properties, varying the inorganic precursor molar percentage in the sol-gel synthesis. The obtained samples were defined as Py/Si-90, Py/Si-92 and Py/Si-94, where the number specifies the inorganic molar percentage. The hybrid samples were characterized by elemental, infrared, (13)C and (29)Si NMR, N(2) adsorption-desorption isotherms and thermogravimetric analyses. The dye-removing ability of these adsorbents was determined by the batch contact adsorption procedure. Effects such as pH value and adsorbent dosage on the adsorption capacities were studied. Four kinetic models were applied. The adsorption was best fitted to Avrami fractional-order kinetic model for the three hybrid material samples. The kinetic data were also adjusted to an intra-particle diffusion model resulting three linear regions, indicating that the adsorption kinetics follows multiple sorption rates. The equilibrium data were fitted to Langmuir, Freundlich and Liu isotherm models. The maximum adsorption capacities were 165.4, 190.3 and 195.9 mg g(-1) for Py/Si-90, Py/Si-92 and Py/Si-94, respectively. Simulated dye-house effluents were used to check the applicability of the proposed adsorbents for effluent treatment. Dye loaded adsorbents were regenerated (>98.2%) by using 0.4 mol L(-1) of NaOH solution as an eluent.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jcis.2012.04.021DOI Listing

Publication Analysis

Top Keywords

hybrid material
16
ionic silica
8
silica based
8
based hybrid
8
pyridinium group
8
textile dye
8
three hybrid
8
material samples
8
molar percentage
8
py/si-90 py/si-92
8

Similar Publications

Heavy metal pollution is a major environmental and health problem due to the toxicity and persistence of metals such as lead, mercury, cadmium, and arsenic in water, soil, and air. Advances in sensor technology have significantly improved the detection and quantification of heavy metals, providing real-time monitoring and mitigation tools. This review explores recent developments in heavy metal detection, focusing on innovative uses of immobilized chromogenic reagents, nanomaterials, perovskites, and nanozymes.

View Article and Find Full Text PDF

Unipolar Barrier Photodetectors Based on Van Der Waals Heterostructure with Ultra-High Light On/Off Ratio and Fast Speed.

Adv Sci (Weinh)

January 2025

Information Materials and Intelligent Sensing Laboratory of Anhui Province, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei, 230601, China.

Unipolar barrier architecture is designed to enhance the photodetector's sensitivity by inducing highly asymmetrical barriers, a higher barrier for blocking majority carriers to depressing dark current, and a low minority carrier barrier without impeding the photocurrent flow through the channel. Depressed dark current without block photocurrent is highly desired for uncooled Long-wave infrared (LWIR) photodetection, which can enhance the sensitivity of the photodetector. Here, an excellent unipolar barrier photodetector based on multi-layer (ML) graphene (G) is developed, WSe, and PtSe (G-WSe-PtSe) van der Waals (vdW) heterostructure, in which extremely low dark current of 1.

View Article and Find Full Text PDF

Dual-signal portable microRNA biosensor based on a photothermal/visual strategy induced by cascading amplification techniques and horseradish peroxidase.

Talanta

January 2025

Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University, Baoding 071002, Hebei Province, PR China. Electronic address:

MicroRNAs (miRNAs) serve as potential biomarkers for many diseases such as cancer, neurodegenerative diseases and cardiovascular conditions. The portable and accurate detection of miRNA is of great significance for the early diagnosis, treatment optimization and prognostic evaluation of diseases. Herein, a photothermal/visual dual-mode assay for let-7a is developed utilizing oxidized 3, 3', 5, 5' - tetramethylbenzidine (oxTMB) as signal reporter.

View Article and Find Full Text PDF

Energy-level rich nanorings hybridizing Ag, Au and AgCl as high-performance SERS substrate for numerous molecules.

Talanta

January 2025

MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, China. Electronic address:

The current surface-enhanced Raman scattering (SERS) substrates typically feature a single energy level, posing challenges in coordinating electromagnetic enhancement (EM) and chemical enhancement (CM), thereby limiting the sensitive detection of numerous crucial target molecules. In this study, novel aggregated nanorings (a-NRs) hybridizing Ag, Au and AgCl are constructed as SERS substrates. On one hand, the obtained a-NRs exhibit robust localized surface plasmon resonance absorption, whose wavelength can be tuned to match three commonly used laser wavelengths (532, 633 and 785 nm) to gain strong EM effect.

View Article and Find Full Text PDF

Gradient porous carbon has become a potential electrode material for energy storage devices, including the aqueous zinc-ion hybrid capacitor (ZIHC). Compared with the sufficient studies on the fabrication of ZIHCs with high electrochemical performance, there is still lack of in-depth understanding of the underlying mechanisms of gradient porous structure for energy storage, especially the synergistic effect of ultramicropores (<1 nm) and micropores (1-2 nm). Here, we report a design principle for the gradient porous carbon structure used for ZIHC based on the data-mining machine learning (ML) method.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!