Effects of X-ray treatments on pathogenic bacteria, inherent microflora, color, and firmness on whole cantaloupe.

Int J Food Microbiol

Coastal Research & Extension Center, Mississippi State University, Pascagoula, MS 39567, United States.

Published: June 2012

Inactivation of inoculated Escherichia coli O157:H7, Listeria monocytogenes, Salmonella enterica and Shigella flexneri on whole cantaloupes using X-ray at different doses (0.1, 0.5, 1.0, 1.5, and 2.0 kGy) was studied. The effect of X-ray on quality parameters (color and texture) of untreated and treated whole cantaloupes was instrumentally determined. The effect of X-ray on microflora counts (mesophilic counts, psychrotrophic counts and yeast and mold counts) of untreated and treated whole cantaloupes was also determined during storage at 22°C for 20 days. A mixture of three strains of each tested organism was spot inoculated (100 μl), separately, onto the surface (5 cm(2)) of cantaloupe rinds (approximately 8-9 log CFU ml(-1)) separately, air dried (60 min), and then treated with X-ray at 22°C and 55% relative humidity. Surviving bacterial populations on cantaloupe surfaces were evaluated using a nonselective medium (tryptic soy agar) with a selective medium overlay for each bacterium; E. coli O157:H7 (CT-SMAC agar), L. monocytogenes (MOA), and S. enterica and S. flexneri (XLD). More than a 5 log CFU reduction was achieved after treatment with 2.0 kGy X-ray, for all tested pathogens. No significant effect of X-ray treatment on cantaloupe color or firmness was detected. Furthermore, treatment with X-ray significantly reduced the initial inherent microflora on whole cantaloupes and inherent levels were significantly (p<0.05) lower than the control sample throughout storage for 20 days.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijfoodmicro.2012.04.001DOI Listing

Publication Analysis

Top Keywords

inherent microflora
8
color firmness
8
coli o157h7
8
untreated treated
8
treated cantaloupes
8
log cfu
8
x-ray
7
effects x-ray
4
x-ray treatments
4
treatments pathogenic
4

Similar Publications

Advances in understanding dietary fiber: Classification, structural characterization, modification, and gut microbiome interactions.

Compr Rev Food Sci Food Saf

January 2025

Department of Food Science and Technology, Virginia Tech, Blacksburg, Virginia, USA.

Gut microbiota and their metabolites profoundly impact host physiology. Targeted modulation of gut microbiota has been a long-term interest in the scientific community. Numerous studies have investigated the feasibility of utilizing dietary fibers (DFs) to modulate gut microbiota and promote the production of health-beneficial bacterial metabolites.

View Article and Find Full Text PDF

Global production and widespread use of plastics are increasing dramatically. With current limited recycling and recovery options, microplastics and nanoplastics (MNPs) persist in the natural environment. Due to their ubiquity, human exposure to MNPs is inevitable.

View Article and Find Full Text PDF

Donor-derived fecal microbiota treatments are efficacious in preventing recurrent Clostridioides difficile infection (rCDI), but they have inherently variable quality attributes, are difficult to scale and harbor the risk of pathogen transfer. In contrast, VE303 is a defined consortium of eight purified, clonal bacterial strains developed for prevention of rCDI. In the phase 2 CONSORTIUM study, high-dose VE303 was well tolerated and reduced the odds of rCDI by more than 80% compared to placebo.

View Article and Find Full Text PDF

Background: Gut dysbiosis, chronic diseases, and microbial recurrent infections concerns have driven the researchers to explore phytochemicals from medicinal and food homologous plants to modulate gut microbiota, mitigate diseases, and inhibit pathogens. Gingerols have attracted attention as therapeutic agents due to their diverse biological activities like gut microbiome regulation, gastro-protective, anti-inflammatory, anti-microbial, and anti-oxidative effects.

Purpose: This review aimed to summarize the gingerols health-promoting potential, specifically focusing on the regulation of gut microbiome, attenuation of disease symptoms, mechanisms of action, and signaling pathways involved.

View Article and Find Full Text PDF

In contemporary microbial research, the exploration of interactions between microorganisms and multicellular hosts constitutes a burgeoning field. The gut microbiota is increasingly acknowledged as a pivotal contributor to various disorders within the endocrine system, encompassing conditions such as diabetes and thyroid diseases. A surge in research activities has been witnessed in recent years, elucidating the intricate interplay between the gut microbiota and disorders of the endocrine system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!