Background: The defining feature of the main olfactory system in mice is that each olfactory sensory neuron expresses only one of more than a thousand different odorant receptor genes. Axons expressing the same odorant receptor converge onto a small number of targets in the olfactory bulb such that each glomerulus is made up of axon terminals expressing just one odorant receptor. It is thought that this precision in axon targeting is required to maintain highly refined odor discrimination. We previously showed that β3GnT2(-/-) mice have severe developmental and axon guidance defects. The phenotype of these mice is similar to adenylyl cyclase 3 (AC3) knockout mice largely due to the significant down-regulation of AC3 activity in β3GnT2(-/-) neurons.
Results: Microarray analysis reveals that nearly one quarter of all odorant receptor genes are down regulated in β3GnT2(-/-) mice compared to controls. Analysis of OR expression by quantitative PCR and in situ hybridization demonstrates that the number of neurons expressing some odorant receptors, such as mOR256-17, is increased by nearly 60% whereas for others such as mOR28 the number of neurons is decreased by more than 75% in β3GnT2(-/-) olfactory epithelia. Analysis of axon trajectories confirms that many axons track to inappropriate targets in β3GnT2(-/-) mice, and some glomeruli are populated by axons expressing more than one odorant receptor. Results show that mutant mice perform nearly as well as control mice in an odor discrimination task. In addition, in situ hybridization studies indicate that the expression of several activity dependent genes is unaffected in β3GnT2(-/-) olfactory neurons.
Conclusions: Results presented here show that many odorant receptors are under-expressed in β3GnT2(-/-) mice and further demonstrate that additional axon subsets grow into inappropriate targets or minimally innervate glomeruli in the olfactory bulb. Odor evoked gene expression is unchanged and β3GnT2(-/-) mice exhibit a relatively small deficit in their ability to discriminate divergent odors. Results suggest that despite the fact that β3GnT2(-/-) mice have decreased AC3 activity, decreased expression of many ORs, and display many axon growth and guidance errors, odor-evoked activity in cilia of mutant olfactory neurons remains largely intact.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3390285 | PMC |
http://dx.doi.org/10.1186/1749-8104-7-17 | DOI Listing |
Front Neurosci
December 2024
Jeffrey Cheah School of Medicine & Health Sciences, Monash University Malaysia, Subang Jaya, Malaysia.
G protein-coupled receptor 139 (GPR139), a highly conserved orphan receptor, is predominantly expressed in the habenula of vertebrate species. Habenula is an ancient epithalamic structure, which is critical to comprehending adaptive behaviors in vertebrates. We have previously demonstrated the role of GPR139 agonists in fear-associated decision-making processes in zebrafish.
View Article and Find Full Text PDFArXiv
December 2024
Department of Neuroscience, Cold Spring Harbor Laboratory, Cold Spring Harbor, USA.
The olfactory system employs responses of an ensemble of odorant receptors (ORs) to sense molecules and to generate olfactory percepts. Here we hypothesized that ORs can be viewed as 3D spatial filters that extract molecular features relevant to the olfactory system, similarly to the spatio-temporal filters found in other sensory modalities. To build these filters, we trained a convolutional neural network (CNN) to predict human olfactory percepts obtained from several semantic datasets.
View Article and Find Full Text PDFZoology (Jena)
December 2024
Department of Biodiversity, Ecology and Evolution, Complutense University of Madrid, Madrid, Spain.
The transition between aquatic and terrestrial habitats leads to extreme structural changes in sensorial systems. Olfactory receptors (OR) are involved in the detection of odorant molecules both in water and on land. Therefore, ORs are affected by evolutionary habitat transitions experienced by organisms.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Department of Biomedical Sciences, Faculty of Biology and Medicine, University of Lausanne, Bugnon 27, CH-1011 Lausanne, Switzerland.
Olfactory sensitivity to odorant molecules is a complex biological function influenced by both endogenous factors, such as genetic background and physiological state, and exogenous factors, such as environmental conditions. In animals, this vital ability is mediated by olfactory sensory neurons (OSNs), which are distributed across several specialized olfactory subsystems depending on the species. Using the phosphorylation of the ribosomal protein S6 (rpS6) in OSNs following sensory stimulation, we developed an ex vivo assay allowing the simultaneous conditioning and odorant stimulation of different mouse olfactory subsystems, including the main olfactory epithelium, the vomeronasal organ, and the Grueneberg ganglion.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
State Key Laboratory of Wheat Improvement, Shandong Agricultural University, No. 61, Daizong Road, Taian 271018, China.
Moths use pheromones to ensure intraspecific communication. Nevertheless, few studies are focused on both intra- and intersexual communication based on pheromone recognition. Pheromone-binding proteins (PBPs) are generally believed pivotal for male moths in recognizing female pheromones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!