Current protocols for the scalable suspension culture of human pluripotent stem cells (hPSCs) are limited by multiple biological and technical challenges that need to be addressed before their use in clinical trials. To overcome these challenges, we have developed a novel bioprocess platform for large-scale expansion of human embryonic and induced pluripotent stem cell lines as three-dimensional size-controlled aggregates. This novel bioprocess utilizes the stepwise optimization of both static and dynamic suspension culture conditions. After screening eight xeno-free media in static suspension culture and optimizing single-cell passaging in dynamic conditions, the scale-up from a static to a dynamic suspension culture in the stirred bioreactor resulted in a two- to threefold improvement in expansion rates, as measured by cell counts and metabolic activity. We successfully produced size-specific aggregates through optimization of bioreactor hydrodynamic conditions by using combinations of different agitation rates and shear protectant concentrations. The expansion rates were further improved by controlling oxygen concentration at normoxic conditions, and reached a maximum eightfold increase for both types of hPSCs. Subsequently, we demonstrated a simple and rapid scale-up strategy that produced clinically relevant numbers of hPSCs (∼2×10(9) cells) over a 1-month period by the direct transfer of "suspension-adapted frozen cells" to a stirred suspension bioreactor. We omitted the required preadaptation passages in the static suspension culture. The cells underwent proliferation over multiple passages in the demonstrated xeno-free dynamic suspension culture while maintaining their self-renewal capabilities, as determined by marker expressions and in vitro spontaneous differentiation. In conclusion, suspension culture protocols of hPSCs could be used to mass produce homogenous and pluripotent undifferentiated cells by identification and optimization of key bioprocess parameters that are complemented by a simple and rapid scale-up platform.

Download full-text PDF

Source
http://dx.doi.org/10.1089/ten.TEC.2012.0161DOI Listing

Publication Analysis

Top Keywords

suspension culture
28
pluripotent stem
12
dynamic suspension
12
suspension
9
human pluripotent
8
stem cell
8
stirred suspension
8
suspension bioreactor
8
novel bioprocess
8
static dynamic
8

Similar Publications

Background: Lutein, a carotenoid, exhibits various biological activities such as maintaining the health of the eye, skin, heart, and bone. Recently, we found that lutein has dual roles in suppressing bone resorption and promoting bone formation. In this study, we examined the effects of lutein in a disuse-induced osteoporosis model using hindlimb-unloaded (HLU) mice.

View Article and Find Full Text PDF

In order to scientifically search for new sources of secondary metabolites with valuable qualities for phytopharmacognosy, tasks requiring a step-by-step solution were set. The primary task is the development of technologies for obtaining in vitro highly productive biomass of cells of relict gymnosperms of the genus , capable of accumulating various classes of secondary metabolites. The study of the accumulation and localization of secondary metabolites allowed us to evaluate the biological activity and cytotoxicity of in vitro cultures.

View Article and Find Full Text PDF

Anthocyanins are significant secondary metabolites that are essential for plant growth and development, possessing properties such as antioxidant, anti-inflammatory, and anti-cancer activities and cardiovascular protection. They offer significant potential for applications in food, medicine, and cosmetics. However, since anthocyanins are mainly obtained through plant extraction and chemical synthesis, they encounter various challenges, including resource depletion, ecological harm, environmental pollution, and the risk of toxic residuals.

View Article and Find Full Text PDF

Suspension growth can greatly increase the cell density and yield of cell metabolites. To meet the requirements of aquatic industries, a culture model derived from skin was developed using the explant outgrowth and enzyme-digesting passaging methods. These cells were kept in vitro continuously for over 12 months and subcultured 68 times.

View Article and Find Full Text PDF

Cancer immunotherapy using engineered cytotoxic effector cells has demonstrated significant potential. The limited spatial complexity of existing models, however, poses a challenge to mechanistic studies attempting to approve existing approaches of effector cell-mediated cytotoxicity within a three-dimensional, solid tumor-like environment. To gain additional experimental control, we developed an approach for constructing three-dimensional (3D) culture models using smart polymers that form temperature responsive hydrogels.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!