Bond-order potentials with split-charge equilibration: application to C-, H-, and O-containing systems.

J Chem Phys

Departments of Physics & Chemistry, United States Naval Academy, Annapolis, Maryland 21402, USA.

Published: April 2012

AI Article Synopsis

Article Abstract

A method for extending charge transfer to bond-order potentials, known as the bond-order potential/split-charge equilibration (BOP/SQE) method [P. T. Mikulski, M. T. Knippenberg, and J. A. Harrison, J. Chem. Phys. 131, 241105 (2009)], is integrated into a new bond-order potential for interactions between oxygen, carbon, and hydrogen. This reactive potential utilizes the formalism of the adaptive intermolecular reactive empirical bond-order potential [S. J. Stuart, A. B. Tutein, and J. A. Harrison, J. Chem. Phys. 112, 6472 (2000)] with additional terms for oxygen and charge interactions. This implementation of the reactive potential is able to model chemical reactions where partial charges change in gas- and condensed-phase systems containing oxygen, carbon, and hydrogen. The BOP/SQE method prevents the unrestricted growth of charges, often observed in charge equilibration methods, without adding significant computational time, because it makes use of a quantity which is calculated as part of the underlying covalent portion of the potential, namely, the bond order. The implementation of this method with the qAIREBO potential is designed to provide a tool that can be used to model dynamics in a wide range of systems without significant computational cost. To demonstrate the usefulness and flexibility of this potential, heats of formation for isolated molecules, radial distribution functions of liquids, and energies of oxygenated diamond surfaces are calculated.

Download full-text PDF

Source
http://dx.doi.org/10.1063/1.4704800DOI Listing

Publication Analysis

Top Keywords

bond-order potentials
8
bop/sqe method
8
harrison chem
8
chem phys
8
bond-order potential
8
oxygen carbon
8
carbon hydrogen
8
reactive potential
8
potential
7
bond-order
5

Similar Publications

Unveiling next-generation organic photovoltaics: Quantum mechanical insights into non-fullerene donor-acceptor compounds.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan; Dry Lab (Janjua.XYZ), Physical Chemistry and Computational Modelling (PCCM), Department of Chemistry, Government College University Faisalabad, Faisalabad 38000 Pakistan. Electronic address:

Organic photovoltaics (OPVs) have improved greatly in recent years in pursuit for efficient and sustainable energy conversion methods. Specifically, utilizing quantum chemistry approaches such as density functional theory (DFT), the electronic structures, energy levels, and charge transport characteristics of donor-π-acceptor (D-π-A) systems based on non-fullerene donor and acceptor molecules have been examined and synthesized. Non-fullerene acceptors offer several advantages over traditional fullerene-based materials, such as enhanced light absorption, modifiable energy levels, and reduced recombination losses.

View Article and Find Full Text PDF

Stack bonding in pentacene and its derivatives.

Phys Chem Chem Phys

January 2025

Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, Virginia 23529, USA.

Understanding the nature of π-stacking interactions is important to molecular recognition, self-assembly, and organic semiconductors. The stack bond order (SBO) model of π-stacking has shown that the conformations of dimers are found at orientations where the combinations of monomer MOs are overall bonding within the stack. DFT calculations show that parallel displaced minima found on the potential energy surface for the π-stacked dimers of pentacene and perfluoropentacene occur when the dimer MOs are constructed from combinations of monomer MOs with an allowed SBO.

View Article and Find Full Text PDF

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Non-equilibrium molecular dynamics (NEMD) simulations reveal the existence of a spontaneous heat current (SHC) in the absence of a temperature gradient and demonstrate ultra-high thermal rectification in asymmetric trapezoid-shaped graphene. These unique properties have potential applications in power generation and thermal circuits, functioning as thermal diodes. Our findings also show the presence of negative and zero thermal conductivity in this system.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs) have emerged as one of the most capable and interesting materials in recent decades and have extraordinary mechanical properties (MPs) and resourceful applications in bioengineering and medicine. Equilibrium molecular dynamics simulations have been performed to investigate the structural and MPs of armchair, chiral, and semiconducting and metallic zigzag single-walled CNTs (SWCNTs) under varying temperature (K) and compressive and tensile strains ±γ (%) with reactive bond-order potential. New results elaborate on the buckling and deformation mechanisms of the SWCNTs through deep analyses of density profiles, radial distribution functions, structural visualizations, and stress-strain interactions.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!