Ralstonia solanacearum is a major phytopathogen that attacks many crops and other plants over a broad geographical range. The extensive genetic diversity of strains responsible for the various bacterial wilt diseases has in recent years led to the concept of an R. solanacearum species complex. Genome sequencing of more than 10 strains representative of the main phylogenetic groups has broadened our knowledge of the evolution and speciation of this pathogen and led to the identification of novel virulence-associated functions. Comparative genomic analyses are now opening the way for refined functional studies. The many molecular determinants involved in pathogenicity and host-range specificity are described, and we also summarize current understanding of their roles in pathogenesis and how their expression is tightly controlled by an intricate virulence regulatory network.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1146/annurev-phyto-081211-173000 | DOI Listing |
Plants (Basel)
January 2025
Department of Integrated Biological Science, Pusan National University, Busan 46241, Republic of Korea.
For plant diseases to become established, plant pathogens require not only virulence factors and susceptible hosts, but also optimal environmental conditions. The accumulation of high soil salinity can have serious impacts on agro-biological ecosystems. However, the interactions between plant pathogens and salinity have not been fully characterized.
View Article and Find Full Text PDFPlant Dis
January 2025
Microbiology, Campus Universitário s/n, Viçosa, Minas Gerais, Brazil, 36570-000;
The Ralstonia solanacearum Species Complex (RSSC) is the most significant plant pathogen group with a wide host range. It is genetically related but displays distinct biological features, such as restrictive geography occurrence. The RSSC comprises three species: Ralstonia pseudosolanacearum (phylotype I and III), Ralstonia solanacearum (phylotype IIA and IIB), and Ralstonia syzygii (phylotype IV) (Fegan and Prior 2005).
View Article and Find Full Text PDFJ Proteome Res
January 2025
Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium.
Proteomics has become a powerful approach for the identification and characterization of type III effectors (T3Es). Members of the species complex (RSSC) deploy T3Es to manipulate host cells and to promote root infection of, among others, a wide range of solanaceous plants such as tomato, potato, and tobacco. Here, we used TurboID-mediated proximity labeling (PL) in tomato hairy root cultures to explore the proxeomes of the core RSSC T3Es RipU, RipD, and RipB.
View Article and Find Full Text PDFMicroorganisms
November 2024
State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing 210095, China.
Maize ( L.) is an important cereal crop species for food, feedstock and industrial material. Maize seeds host a suitable ecosystem for endophytic bacteria, facilitating seed germination and seedling growth.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Centre for Legume Plant Genetics and System Biology, School of Future Technology and Haixia Institute of Science and Technology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
Subtilases (SBTs), known as serine proteases or phytoproteases in plants, are crucial enzymes involved in plant development, growth, and signaling pathways. Despite their recognized importance in other plant species, information regarding their functional roles in cultivated peanut ( L.) remains sparse.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!