A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications. | LitMetric

Hilbert-Huang transformation-based time-frequency analysis methods in biomedical signal applications.

Proc Inst Mech Eng H

Department of Electrical Engineering, National Taiwan Ocean University, Taiwan, Republic of China.

Published: March 2012

Hilbert-Huang transformation, wavelet transformation, and Fourier transformation are the principal time-frequency analysis methods. These transformations can be used to discuss the frequency characteristics of linear and stationary signals, the time-frequency features of linear and non-stationary signals, the time-frequency features of non-linear and non-stationary signals, respectively. The Hilbert-Huang transformation is a combination of empirical mode decomposition and Hilbert spectral analysis. The empirical mode decomposition uses the characteristics of signals to adaptively decompose them to several intrinsic mode functions. Hilbert transforms are then used to transform the intrinsic mode functions into instantaneous frequencies, to obtain the signal's time-frequency-energy distributions and features. Hilbert-Huang transformation-based time-frequency analysis can be applied to natural physical signals such as earthquake waves, winds, ocean acoustic signals, mechanical diagnosis signals, and biomedical signals. In previous studies, we examined Hilbert-Huang transformation-based time-frequency analysis of the electroencephalogram FPI signals of clinical alcoholics, and 'sharp I' wave-based Hilbert-Huang transformation time-frequency features. In this paper, we discuss the application of Hilbert-Huang transformation-based time-frequency analysis to biomedical signals, such as electroencephalogram, electrocardiogram signals, electrogastrogram recordings, and speech signals.

Download full-text PDF

Source
http://dx.doi.org/10.1177/0954411911434246DOI Listing

Publication Analysis

Top Keywords

time-frequency analysis
20
hilbert-huang transformation-based
16
transformation-based time-frequency
16
hilbert-huang transformation
12
signals
12
time-frequency features
12
time-frequency
8
analysis methods
8
signals time-frequency
8
non-stationary signals
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!