Therapeutic antibodies are often engineered or selected to have high on-target binding affinities that can be challenging to determine precisely by most biophysical methods. Here, we explore the dynamic range of the kinetic exclusion assay (KinExA) by exploiting the interactions of an anti-DKK antibody with a panel of DKK antigens as a model system. By tailoring the KinExA to each studied antigen, we obtained apparent equilibrium dissociation constants (K(D) values) spanning six orders of magnitude, from approximately 100 fM to 100 nM. Using a previously calibrated antibody concentration and working in a suitable concentration range, we show that a single experiment can yield accurate and precise values for both the apparent K(D) and the apparent active concentration of the antigen, thereby increasing the information content of an assay and decreasing sample consumption. Orthogonal measurements obtained on Biacore and Octet label-free biosensor platforms further validated our KinExA-derived affinity and active concentration determinations. We obtained excellent agreement in the apparent affinities obtained across platforms and within the KinExA method irrespective of the assay orientation employed or the purity of the recombinant or native antigens.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340344PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036261PLOS

Publication Analysis

Top Keywords

dynamic range
8
range kinetic
8
kinetic exclusion
8
exclusion assay
8
active concentration
8
exploring dynamic
4
assay
4
assay characterizing
4
characterizing antigen-antibody
4
antigen-antibody interactions
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!