Biogenic polyamines are essential for cell growth and differentiation, while polyamine analogues exert antitumor activity in multiple experimental model systems, including breast and lung cancer. Dendrimers are widely used for drug delivery in vitro and in vivo. We report the bindings of biogenic polyamines, spermine (spm), and spermidine (spmd), and their synthetic analogues, 3,7,11,15-tetrazaheptadecane.4HCl (BE-333) and 3,7,11,15,19-pentazahenicosane.5HCl (BE-3333) to dendrimers of different compositions, mPEG-PAMAM (G3), mPEG-PAMAM (G4) and PAMAM (G4). FTIR and UV-visible spectroscopic methods as well as molecular modeling were used to analyze polyamine binding mode, the binding constant and the effects of polyamine complexation on dendrimer stability and conformation. Structural analysis showed that polyamines bound dendrimers through both hydrophobic and hydrophilic contacts with overall binding constants of K(spm-mPEG-G3) = 7.6 × 10(4) M(-1), K(spm-mPEG-PAMAM-G4) = 4.6 × 10(4) M(-1), K(spm-PAMAM-G4) = 6.6 × 10(4) M(-1), K(spmd-mPEG-G3) = 1.0 × 10(5) M(-1), K(spmd-mPEG-PAMAM-G4) = 5.5 × 10(4) M(-1), K(spmd-PAMAM-G4) = 9.2 × 10(4) M(-1), K(BE-333-mPEG-G3) = 4.2 × 10(4) M(-1), K(Be-333-mPEG-PAMAM-G4) = 3.2 × 10(4) M(-1), K(BE-333-PAMAM-G4) = 3.6 × 10(4) M(-1), K(BE-3333-mPEG-G3) = 2.2 × 10(4) M(-1), K(Be-3333-mPEG-PAMAM-G4) = 2.4 × 10(4) M(-1), K(BE-3333-PAMAM-G4) = 2.3 × 10(4) M(-1). Biogenic polyamines showed stronger affinity toward dendrimers than those of synthetic polyamines, while weaker interaction was observed as polyamine cationic charges increased. The free binding energies calculated from docking studies were: -3.2 (spermine), -3.5 (spermidine) and -3.03 (BE-3333) kcal/mol, with the following order of binding affinity: spermidine-PAMAM-G-4>spermine-PAMMAM-G4>BE-3333-PAMAM-G4 consistent with spectroscopic data. Our results suggest that dendrimers can act as carrier vehicles for delivering antitumor polyamine analogues to target tissues.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338638PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036087PLOS

Publication Analysis

Top Keywords

104 m-1
44
biogenic polyamines
12
m-1
12
0
11
synthetic polyamines
8
polyamine analogues
8
polyamines
6
dendrimers
6
polyamine
5
binding
5

Similar Publications

Elucidation of the interaction between apo-transferrin and indisulam via multi-spectroscopic techniques and molecular modeling.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

School of Chemistry and Chemical Engineering, Nanchang University, Nanchang 330031, Jiangxi, China. Electronic address:

Apo-transferrin (apo-TRF) is a vital protein for maintaining iron balance in the body, which is produced by the liver. Indisulam (IDM) has been extensively used to treat cancer in clinical study and has been identified as a molecular glue. Iron imbalances in the body are believed to encourage the growth and spread of cancer cells.

View Article and Find Full Text PDF

New insights into the interactions between the antibiotic enrofloxacin and fish protein by spectroscopic, thermodynamic, and theoretical simulation approaches.

Spectrochim Acta A Mol Biomol Spectrosc

December 2024

State Key Laboratory of Food Science and Resources, Jiangnan University, Wuxi, Jiangsu Province, China; School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu Province, China.

In this study, myofibrillar proteins (MPs) from crucian carp were utilized as a model to investigate the binding mechanism between fish proteins and antibiotic residues. Fluorescence quenching confirmed the static quenching (K = 1.89 × 10 M s, K = 1.

View Article and Find Full Text PDF

In this work, we sought to apprehend quercetin binding affinity and its interaction behavior in complex with human serum albumin (HSA) and calf thymus DNA (ctDNA) through multi spectroscopy and molecular dynamics and also evaluated its effects on colorectal cancer. The binding constants of ctDNA-quercetin and HSA-quercetin complexes at 298 K, which were calculated to be (2.67 ± 0.

View Article and Find Full Text PDF

A green method on dipole solvent as "Activators": γ-valerolactone/HO system promoted degradation of ciprofloxacin by ferrate(Ⅵ).

Water Res

December 2024

Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China.

This paper investigates the efficient degradation of ciprofloxacin (CIP) in a sustainable γ-valerolactone (GVL) and water (H₂O) mixed system by controlling proton transfer and reducing the self-decay rate of Fe(VI). The kinetic model reveals that the GVL/H₂O system exhibits a rate constant of (9.7 ± 0.

View Article and Find Full Text PDF

Computer-aided design of caffeic acid derivatives: free radical scavenging activity and reaction force.

J Mol Model

December 2024

Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Avenida Ferrocarril San Rafael Atlixco, Número 186, Colonia Leyes de Reforma 1A Sección, Alcaldía Iztapalapa, Código Postal 09310, Ciudad de Mexico, Mexico.

Context: Antioxidants are known to play a beneficial role in human health. Caffeic acid has been previously recognized as efficient in this context. However, such a capability can be enhanced through structural modification.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!