The aim of the present study was to investigate chromosomal aberrations in sporadic Japanese papillary thyroid carcinomas (PTCs), concomitant with the analysis of oncogene mutational status. Twenty-five PTCs (11 with BRAF(V600E), 4 with RET/PTC1, and 10 without mutation in HRAS, KRAS, NRAS, BRAF, RET/PTC1, or RET/PTC3) were analyzed using Genome-Wide Human SNP Array 6.0 which allows us to detect copy number alteration (CNA) and uniparental disomy (UPD), also referred to as copy neutral loss of heterozygosity, in a single experiment. The Japanese PTCs showed relatively stable karyotypes. Seven cases (28%) showed CNA(s), and 6 (24%) showed UPD(s). Interestingly, CNA and UPD were rarely overlapped in the same tumor; the only one advanced case showed both CNA and UPD with a highly complex karyotype. Thirteen (52%) showed neither CNA nor UPD. Regarding CNA, deletions tended to be more frequent than amplifications. The most frequent and recurrent region was the deletion in chromosome 22; however, it was found in only 4 cases (16%). The degree of genomic instability did not depend on the oncogene status. However, in oncogene-positive cases (BRAF(V600E) and RET/PTC1), tumors with CNA/UPD were less frequent (5/15, 33%), whereas tumors with CNA/UPD were more frequent in oncogene-negative cases (7/10, 70%), suggesting that chromosomal aberrations may play a role in the development of PTC, especially in oncogene-negative tumors. These data suggest that Japanese PTCs may be classified into three distinct groups: CNA(+), UPD(+), and no chromosomal aberrations. BRAF(V600E) mutational status did not correlate with any parameters of chromosomal defects.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3340412PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0036063PLOS

Publication Analysis

Top Keywords

chromosomal aberrations
12
cna upd
12
copy number
8
number alteration
8
uniparental disomy
8
japanese papillary
8
papillary thyroid
8
thyroid carcinomas
8
distinct groups
8
mutational status
8

Similar Publications

Rationale: This study investigates the genetic cause of primary infertility and short stature in a woman, focusing on maternal X chromosome pericentric inversion and its impact on offspring genetic outcomes, including deletions at Xp22.33 and Xp22.33p11.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

We aimed to synthesize silver nanoparticles (AgNPs) using (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, -AgNPs, and the insecticide ATCBRA-commonly used for pest control-on the root system of (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.

View Article and Find Full Text PDF

Chromosomal abnormalities of the embryo are the most common cause of first-trimester pregnancy loss. In this single-center study, we assessed the frequency and the spectrum of chromosomal abnormalities in miscarriages for each year of maternal age from 23 to 44. Cytogenetic data were obtained by conventional karyotyping of 7118 miscarriages in women with naturally conceived pregnancies.

View Article and Find Full Text PDF

Background: Chromosomal inversions are underappreciated causes of rare diseases given their detection, resolution, and clinical interpretation remain challenging. Heterozygous mutations in the MEIS2 gene cause an autosomal dominant syndrome characterized by intellectual disability, cleft palate, congenital heart defect, and facial dysmorphism at variable severity and penetrance.

Case Presentation: Herein, we report a Chinese girl with intellectual disability, developmental delay, and congenital heart defect, in whom G-banded karyotype analysis identified a de novo paracentric inversion 46,XX, inv(15)(q15q26.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!