TRASER--Total Reflection Amplification of Spontaneous Emission of Radiation.

PLoS One

Department of Dermatology, University of California Irvine, Irvine, California, United States of America.

Published: September 2012

Background And Objective: Light and lasers in medical therapy have made dramatic strides since their invention five decades ago. However, the manufacture of lasers can be complex and expensive which often makes treatments limited and costly. Further, no single laser will provide the correct parameters to treat all things. Hence, laser specialists often need multiple devices to practice their specialty. A new concept is described herein that has the potential to replace many lasers and light sources with a single 'tunable' device.

Study Design/material And Methods: This device amplifies spontaneous emission of radiation by capturing and retaining photons through total internal reflection, hence the acronym Total Reflection Amplification of Spontaneous Emission of Radiation, or TRASER.

Results: Specific peaks of light can be produced in a reproducible manner with high peak powers of variable pulse durations, a large spot size, and high repetition rate.

Conclusion: Considering the characteristics and parameters of Traser technology, it is possible that this one device would likely be able to replace the pulsed dye laser and many other light based systems.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3338779PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0035899PLOS

Publication Analysis

Top Keywords

spontaneous emission
12
emission radiation
12
reflection amplification
8
amplification spontaneous
8
traser--total reflection
4
radiation background
4
background objective
4
light
4
objective light
4
light lasers
4

Similar Publications

Twisted Cucurbit[14]uril-Based Supramolecular Self-Assembly Induces Fluorescence Emission of Dye Molecules for Multi-Channel Cell Imaging.

Chemistry

December 2024

Department of Nephrology, Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatric Metabolism and Inflammatory Diseases, Chongqing, 400042, China.

In this study, a supramolecular fluorescent material was constructed by using double-cavity twisted cucurbit[14]uril (tQ[14]) and positively charged Astrazon Pink FG (APFG) based on the non-covalent host-guest interaction for the first time. The thermodynamic parameters of the APFG@tQ[14] in aqueous solution were determined by isothermal titration calorimetry (ITC), the results indicated that the spontaneous assembly of APFG@tQ[14] is mainly driven by enthalpy. The intramolecular charge transfer (ICT) effect induced the APFG@tQ[14] probe to emit a strong orange-red fluorescence.

View Article and Find Full Text PDF

This report investigates the preparation, characterization, and application of activated carbon derived from Spathodea campanulata flowers (SCAC) to remove Congo Red (CR) dye from aqueous streams. SCAC was synthesized using orthophosphoric acid activation which yielded a mesoporous material with a specific surface area of (986.41 m/g), significantly exceeding values reported for flower-derived activated carbons in the available literature.

View Article and Find Full Text PDF

Perovskite Nanocrystal Self-Assemblies in 3D Hollow Templates.

ACS Nano

January 2025

IBM Research Europe─Zurich, Säumerstrasse 4, 8803 Rüschlikon, Switzerland.

Highly ordered nanocrystal (NC) assemblies, namely, superlattices (SLs), have been investigated as materials for optical and optoelectronic devices due to their unique properties based on interactions among neighboring NCs. In particular, lead halide perovskite NC SLs have attracted significant attention owing to their extraordinary optical characteristics of individual NCs and collective emission processes like superfluorescence (SF). So far, the primary method for preparing perovskite NC SLs has been the drying-mediated self-assembly method, in which the colloidal NCs spontaneously assemble into SLs during solvent evaporation.

View Article and Find Full Text PDF

Novel Perspectives for Sensory Analysis Applied to Piperaceae and Aromatic Herbs: A Pilot Study.

Foods

January 2025

Interdepartmental Research Centre "Nutraceuticals and Food for Health", University of Pisa, Via del Borghetto 80, I-56124 Pisa, Italy.

Spices and aromatic herbs are important components of everyday nutrition in several countries and cultures, thanks to their capability to enhance the flavor of many dishes and convey significant emotional contributions by themselves. Indeed, spices as well as aromatic herbs are to be considered not only for their important values of antimicrobial agents or flavor enhancers everybody knows, but also, thanks to their olfactory and gustatory spectrum, as drivers to stimulate the consumers' memories and, in a stronger way, emotions. Considering these unique characteristics, spices and aromatic herbs have caught the attention of consumer scientists and experts in sensory analysis for their evaluation using semi-quantitative approaches, with interesting evidence.

View Article and Find Full Text PDF
Article Synopsis
  • Effluent from the textile industry, particularly dye wastewater like malachite green, poses significant environmental risks, leading to increased research into sustainable dye removal methods.
  • A hydrogel composite was developed using black liquor from corncobs and sodium alginate, achieving optimal dye adsorption at a 1:4 weight ratio, with a capacity of 650 mg/g for a dye concentration of 1500 mg/L.
  • Characterization techniques confirmed high dye removal efficiencies (up to 95.54%) for both the black liquor/sodium alginate and alkaline lignin/sodium alginate hydrogels, with the adsorption kinetics fitting the pseudo-second-order model and a strong correlation to the Langmuir isotherm.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!