d1-1811 is a viable simian virus 40 deletion mutant which lacks the DNA region corresponding to the major capping site of the late viral RNA. The exact size of the deletion (40 base pairs) was determined by comparison of the mutant DNA sequence with the wild-type simian virus 40 (strain 776) DNA sequence. Although d1-1811 forms somewhat smaller plaques, the amount of viral RNA late after infection was not significantly reduced compared with that of the wild type. Virus-specific, polyadenylate-containing, 32P-labeled late RNA was purified from the cytoplasm and enzymatically degraded to characterize the 5' terminus. The cap-containing oligonucleotides were isolated, and their structures were analyzed by further digestion. Instead of a single cap structure, we found a variety of capped 5' termini, with adenosine caps occurring much more frequently than guanosine caps. Nevertheless, there was a remarkable homology between both types of terminal sequences. Conceivably, the minor cap population present in wild-type simian virus 40 late mRNA may correspond to the collection of capped termini identified in the d1-1811 late mRNA . Cellular cytoplasmic RNA shows a similar pattern of cap structures, but the relative abundance is quite different.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC353471PMC
http://dx.doi.org/10.1128/JVI.31.2.484-493.1979DOI Listing

Publication Analysis

Top Keywords

simian virus
16
late mrna
12
viable simian
8
virus deletion
8
deletion mutant
8
viral rna
8
dna sequence
8
wild-type simian
8
capped termini
8
late
6

Similar Publications

The primary immune constituents in the brain, microglia and macrophages, are the target for HIV in people and simian immunodeficiency virus (SIV) in nonhuman primates. This infection can lead to neurological dysfunction, known as HIV-associated neurocognitive disorder (HAND). Given the gaps in our knowledge on how these cells respond in vivo to CNS infection, we perform single-cell multiomic sequencing, including gene expression and ATAC-seq, on myeloid cells from the brains of rhesus macaques with SIV-induced encephalitis (SIVE) as well as uninfected controls.

View Article and Find Full Text PDF

HIV-1 Vpu and SARS-CoV-2 ORF3a proteins disrupt STING-mediated activation of antiviral NF-κB signaling.

Sci Signal

January 2025

Cancer Institute (Key Laboratory of Cancer Prevention and Intervention, China National Ministry of Education), Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310000, China.

Activation of the stimulator of interferon genes (STING) pathway by cytosolic DNA leads to the activation of the transcription factors interferon regulatory factor 3 (IRF3) and nuclear factor κB (NF-κB). Although many viruses produce proteins that inhibit IRF3-dependent antiviral responses, some viruses produce proteins that inhibit STING-induced NF-κB activation without blocking IRF3 activation. Here, we found that STING-activated, NF-κB-dependent, and IRF3-independent innate immunity inhibited the replication of the DNA virus herpes simplex virus type 1 (HSV-1), the RNA virus coxsackievirus A16 (CV-A16), and the retrovirus HIV-1.

View Article and Find Full Text PDF

Plasma galectin-9 levels correlate with blood monocyte turnover and predict simian/human immunodeficiency virus disease progression.

Transl Med Commun

January 2024

Department of Anatomy, Physiology, & Cell Biology, School of Veterinary Medicine, and California National Primate Research Center, University of California, Davis, County Road 98 & Hutchison Drive, Davis, CA, USA.

Background: Late-stage human immunodeficiency virus (HIV) infection is typically characterized by low CD4 + T-cell count. We previously showed that profound changes in the monocyte turnover (MTO) rate in rhesus macaques infected by the simian immunodeficiency virus (SIV) outperforms declining CD4 + T-cell counts in predicting rapid health decline associated with progression to terminal disease. High MTO is associated with increased tissue macrophage death.

View Article and Find Full Text PDF

The membrane-proximal external region (MPER) of the HIV-1 envelope is a target for broadly neutralizing antibodies (bnAbs), and vaccine-elicited MPER-directed antibodies have recently been reported from a human clinical trial. In this study, we sought to identify MPER-directed nAbs in simian immunodeficiency virus (SIV)-infected rhesus macaques. We isolated four lineages of SIV MPER-directed nAbs from two SIV-infected macaques.

View Article and Find Full Text PDF

SARS-Cov-2 is a corona virus that causes COVID-19 disease, a viral infection responsible for the pandemic decreed by the World Health Organization in March 2020. Angiotensin-converting enzyme 2 (ACE-2) functions as the main receptor for SARS-Cov-2. The study aimed to detect the expression of ACE-2 in the gastrointestinal tract, kidney, and lung in the rhesus monkeys and squirrel monkeys.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!