Developing animals frequently adjust their growth programs and/or their maturation or metamorphosis to compensate for growth disturbances (such as injury or tumor) and ensure normal adult size. Such plasticity entails tissue and organ communication to preserve their proportions and symmetry. Here, we show that imaginal discs autonomously activate DILP8, a Drosophila insulin-like peptide, to communicate abnormal growth and postpone maturation. DILP8 delays metamorphosis by inhibiting ecdysone biosynthesis, slowing growth in the imaginal discs, and generating normal-sized animals. Loss of dilp8 yields asymmetric individuals with an unusually large variation in size and a more varied time of maturation. Thus, DILP8 is a fundamental element of the hitherto ill-defined machinery governing the plasticity that ensures developmental stability and robustness.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1126/science.1216735 | DOI Listing |
Methods Mol Biol
January 2025
Department of Integrative Biology and Physiology, Medical School, Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, USA.
Homeobox genes (HOX), the master regulators, deploy a unique set of target genes to coordinate and orchestrate the spatiotemporal development of an organism. HOX encoded transcriptional factors regulate the expression of target genes by binding to the specific sequences on the genome. Chromatin Immunoprecipitation (ChIP) and Chromatin Immunoprecipitation with Sequencing (ChIP-Seq) are widely used to map and understand specific gene locus and global regulatory regions on the genome.
View Article and Find Full Text PDFPLoS One
December 2024
Instituto de Neurociencias CSIC-UMH, Universidad Miguel Hernandez, Sant Joan d'Alacant, Alicante, Spain.
Fasciclin 2 (Drosophila NCAM) is a homophilic Cell Adhesion Molecule expressed at moderate levels in the proliferating epithelial cells of imaginal discs, where it engages EGFR in a cell autonomous auto-stimulatory loop that promotes growth along larval development. In addition, Fasciclin 2 is expressed at high levels in the pre-differentiating cells of imaginal discs. Gain-of-function genetic analysis shows that Fasciclin 2 acts as a non-cell autonomous repressor of EGFR when high expression levels are induced during imaginal disc growth.
View Article and Find Full Text PDFFASEB J
December 2024
Shandong Provincial Key Laboratory of Animal Cell and Developmental Biology, School of Life Sciences, Shandong University, Qingdao, China.
STAR Protoc
December 2024
Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA; Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA. Electronic address:
Elife
November 2024
Department of Genetics, Albert Einstein College of Medicine, Bronx, United States.
Many cell fate decisions are determined transcriptionally. Accordingly, some fate specification is prevented by Inhibitor of DNA-binding (Id) proteins that interfere with DNA binding by master regulatory transcription factors. We show that the Id protein Extra macrochaetae (Emc) also affects developmental decisions by regulating caspase activity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!