Determination of low concentration of Paracoccus denitrificans encapsulated in polyvinyl alcohol LentiKat's pellets.

Appl Microbiol Biotechnol

Department of Water Technology and Environmental Engineering, Faculty of Environmental Technology, Institute of Chemical Technology Prague, Prague, Czech Republic.

Published: June 2012

The aim of this work was to compare three methods to determinate low concentrations of Paracoccus denitrificans encapsulated in polyvinyl alcohol pellets, which is important for evaluation and optimization of pellet production as well as for monitoring of biomass growth. Pellets with different and well-defined biomass concentrations were used for experiments. The following fast and simple methods were tested: (1) dissolution of polyvinyl alcohol in hot water followed by dry weight estimation, (2) dissolution of polyvinyl alcohol in hot water followed by optical density measurement, (3) and extraction and quantification of proteins. Dry weight estimation proved to be problematic as it was difficult to separate biomass from polymeric carrier. Optical density measurement showed good linearity of dependence of optical density on biomass content, but determined limits of detection and limits of quantification were not within the range necessary for intended application. The only tested method meeting the requirements for sensitivity was determination of protein concentration after protein extraction.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00253-012-4073-5DOI Listing

Publication Analysis

Top Keywords

polyvinyl alcohol
16
optical density
12
paracoccus denitrificans
8
denitrificans encapsulated
8
encapsulated polyvinyl
8
dissolution polyvinyl
8
alcohol hot
8
hot water
8
dry weight
8
weight estimation
8

Similar Publications

By analyzing facial features to perform expression recognition and health monitoring, facial perception plays a pivotal role in noninvasive, real-time disease diagnosis and prevention. Current perception routes are limited by structural complexity and the necessity of a power supply, making timely and accurate monitoring difficult. Herein, a self-powered poly(vinyl alcohol)-gellan gum-glycerol thermogalvanic gel patch enabling facial perception is developed for monitoring emotions and atypical pathological states.

View Article and Find Full Text PDF

Chronic wounds represent a persistent clinical challenge due to prolonged inflammation and impaired tissue repair mechanisms. Cannabidiol (CBD), recognized for its anti-inflammatory and pro-healing properties, shows therapeutic promise in wound care. However, its delivery via lipid nanoparticles (LNPs) remains challenging due to CBD's inherent instability and low bioavailability.

View Article and Find Full Text PDF

This study investigates 3D extrusion bioinks for cartilage tissue engineering by characterizing the physical properties of 3D-printed scaffolds containing varying alginate and polyvinyl alcohol (PVA) concentrations. We systematically investigated the effects of increasing PVA and alginate concentrations on swelling, degradation, and the elastic modulus of printed hydrogels. Swelling decreased significantly with increased PVA concentrations, while degradation rates rose with higher PVA concentrations, underscoring the role of PVA in modulating hydrogel matrix stability.

View Article and Find Full Text PDF

Chinese herbal medicine has offered an enormous source for developing novel bio-soft materials. In this research, the natural polysaccharide isolated from the Chinese herbal medicine was employed as the secondary building block to fabricate a "hybrid" hydrogel with synthetic poly (vinyl alcohol) (PVA) polymers. Thanks to the presence of mannose units that contain cis-diol motifs on the chain of the polysaccharides, efficient crosslinking with the borax is allowed and reversible covalent borate ester bonds are formed.

View Article and Find Full Text PDF

Development of Thermosensitive Hydrogels with Tailor-Made Geometries to Modulate Cell Harvesting of Non-Flat Cell Cultures.

Gels

December 2024

Polymer Functionalization Group, Departamento de Química Macromolecular Aplicada, Instituto de Ciencia y Tecnología de Polímeros-Consejo Superior de Investigaciones Científicas (ICTP-CSIC), Calle Juan de la Cierva, n° 3, 28006 Madrid, Spain.

Considering the complexity in terms of design that characterizes the different tissues of the human body, it is necessary to study and develop more precise therapies. In this sense, this article presents the possibility of fabricating photocurable thermosensitive hydrogels with free geometry and based on N-Vinyl Caprolactam (VCL) with the aim of modulating the adhesion of non-planar cell cultures. The fabrication process is based on the use as a mold of two-layer thick water-soluble polyvinyl alcohol (PVA) previously printed by Extrusion Material (MatEx).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!