We model a laterally coupled Franz-Keldysh add-drop ring modulator designed to overcome the C-band indirect absorption of silicon-germanium. Although our concept is based on loss-sensitive interferometry, it utilizes the same highly absorptive germanium-rich compositions geared toward complementary metal-oxide semiconductor (CMOS) photodetectors and electroabsorption modulators. The proposed device can be integrated with passive waveguide networks in which the carrier plasma modulation mechanism is ineffective. In addition, unlike previous silicon-germanium modulator schemes, complex butt-coupling between the passive transport and the active silicon-germanium waveguides is not required. Instead, the optical mode remains guided within the transport waveguide, minimizing transition losses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1364/OL.37.001496 | DOI Listing |
Case Rep Dent
January 2025
Department of Surgical Sciences, Division of Conservative Dentistry and Endodontics, School of Dental Medicine, University of Cagliari, Cagliari, Italy.
This case report discusses the successful management of a deep palatal developmental groove associated with Stage III generalized Grade C periodontitis. Despite prior nonsurgical periodontal therapy, the disease progressed rapidly, necessitating further intervention. A comprehensive evaluation revealed generalized periodontitis with localized tooth-related predisposing factor due to a developmental groove in the vital upper left lateral incisor.
View Article and Find Full Text PDFRev Cardiovasc Med
January 2025
Cardiac Surgery, University of Cincinnati Medical Center, Cincinnati, OH 45202, USA.
Background: The fluorescent dye indocyanine green (ICG) has been used to identify anatomical structures intraoperatively in coronary artery bypass grafting (CABG). This study aimed to evaluate the feasibility of using ICG to assess graft patency and territorial distribution of myocardial reperfusion during CABG.
Methods: Porcine arrested hearts (n = 18) were used to evaluate territorial distribution of native coronary arteries and of a coronary bypass constructed with porcine saphenous vein graft (SVG) using ICG.
J Neurophysiol
January 2025
Department of Sports Science, Zhejiang University, Hangzhou, Zhejiang, China.
Human postural control system has the capacity to adapt to balance-challenging perturbations. However, the characteristics and mechanisms of postural adaptation to continuous perturbation under the sensory conflicting environments remain unclear. We aimed to investigate the functional role of oscillatory coupling drive to lower-limb muscles with changes in balance control during postural adaptation under multisensory congruent and incongruent environments.
View Article and Find Full Text PDFJ Exp Biol
January 2025
Michigan State University, Department of Fisheries and Wildlife, East Lansing, MI, USA.
Efficient navigation is crucial for the reproductive success of many migratory species, often driven by competing pressures to conserve energy and reduce predation risk. Little is known about how non-homing species achieve this balance. We show that sea lamprey (Petromyzon marinus), an ancient extant vertebrate, uses persistent patterns in hydro-geomorphology to quickly and efficiently navigate through complex ecosystems.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Department of Physical and Analytical Chemistry & Institute of Biotechnology of Asturias, University of Oviedo, c/Julián Clavería 8, 33006, Oviedo, Spain. Electronic address:
The COVID-19 outbreak was an important turning point in the development of a new generation of biosensing technologies. The synergistic combination of an immunochromatographic test (lateral flow immunoassays, LFIA) and signal transducers provides enhanced sensitivity and the ability to quantify in the rapid tests. This is possible due to the variety of nanoparticles that can be used as reporter labels.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!