Fusing telomeres with RNF8.

Nucleus

Division of Molecular Genetics, The Netherlands Cancer Institute, Amsterdam, The Netherlands.

Published: March 2012

DNA repair activities at DNA double-strand breaks (DSBs) are under control of regulatory ubiquitylation events governed by the RNF8 and RNF168 ubiquitin-ligases. Defects in this regulatory mechanism, as with mutation of other key DNA damage-response factors, lead to genomic instability and cancer, presumably due to impaired repair of DNA lesions. Recent work revealed that RNF8 and RNF168 also play critical roles at natural chromosome ends, when no longer adequately shielded by telomeres. In contrast to repair of DSBs being needed to maintain genome integrity, repair activities at telomeres create chromosome end-to-end fusions that threaten genome integrity. Upon cell division these telomere fusions give rise to genomic alterations and instability via chromosomal missegregration and initiation of breakage-fusion-bridge cycles. Here, I discuss the role of RNF8 at natural chromosome ends and its (potential) consequences.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3383569PMC
http://dx.doi.org/10.4161/nucl.19322DOI Listing

Publication Analysis

Top Keywords

repair activities
8
rnf8 rnf168
8
natural chromosome
8
chromosome ends
8
genome integrity
8
fusing telomeres
4
rnf8
4
telomeres rnf8
4
dna
4
rnf8 dna
4

Similar Publications

Infected burn wounds present significant clinical challenges due to delayed healing and risk of infection, necessitating advanced treatments that offer both antimicrobial and regenerative properties. This study aimed to develop and evaluate multifunctional electrospun nanofiber films incorporating rhamnose (as an angiogenic agent) and therapeutic agents, namely fluticasone, mupirocin, ciprofloxacin, and silver sulfadiazine, for the enhanced healing of infected burn wounds. Nanofibers containing rhamnose, polyacrylonitrile, polyvinyl alcohol and therapeutic agents were fabricated electrospinning.

View Article and Find Full Text PDF

The future of lactoferrin: A closer look at LipoDuo technology.

J Liposome Res

January 2025

Samarth Biorigins LLP, KIADB Industrial Area, Tumkur, India.

Background: Lactoferrin (Lf), a multifunctional glycoprotein known for its roles in immune modulation, iron metabolism, and antimicrobial activity, has limited therapeutic efficacy due to poor bioavailability. Liposomal encapsulation of lactoferrin (LLf) offers a potential solution by improving its stability, absorption, and sustained release, making it a promising candidate for various clinical applications. This study aims to compare the effectiveness of LLf and plain Lf in cellular uptake, proliferation, and wound healing using HEK-293T and Caco-2 cell lines.

View Article and Find Full Text PDF

Objective To investigate the effect of basic helix-loop-helix family member E40 (BHLHE40) on the invasion and migration of osteosarcoma (OS) cells, and to explore the role of the phosphatidylinositol 3-kinase/protein kinase B (PI3K/AKT) signaling pathway in the biological behavior of OS mediated by BHLHE40, providing a scientific basis for targeted therapy of OS. Methods On the basis of clinical OS samples and OS cell lines, the expression differences of BHLHE40 between OS and adjacent tissues, as well as those between OS cells and normal osteoblast cell lines, were analyzed. BHLHE40 knockdown OS cells were obtained through shRNA transfection.

View Article and Find Full Text PDF

Objective: Cervical cancer is a common malignancy among women, and radiotherapy remains a primary treatment modality across all disease stages. However, resistance to radiotherapy frequently results in treatment failure, highlighting the need to identify novel therapeutic targets to improve clinical outcomes.

Methods: The expression of molecule interacting with CasL-2 (MICAL2) was confirmed in cervical cancer tissues and cell lines through western blotting (WB) and immunohistochemistry (IHC).

View Article and Find Full Text PDF

Increased reactive astrocytes and NLRC4-mediated neuronal pyroptosis in advanced visual structures contralateral to the optic nerve crush eye in mice.

Exp Eye Res

January 2025

State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic center, Sun Yat-sen University, Guangzhou 510000, Guangdong, China. Electronic address:

Currently, research on optic nerve injury predominantly focuses on the retina and optic nerve, but emerging evidence suggests that optic nerve injury also affects advanced visual structures like the superior colliculus (SC) and primary visual cortex (V1 region). However, the exact mechanisms have not been fully explored. This study aims to investigate the characteristics and mechanisms of pathology in the SC and V1 region after optic nerve crush (ONC) to deepen our understanding of the central mechanism of visual injury.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!