Analytical solution of the mean field Ising model for finite systems.

J Phys Condens Matter

Instituto de Ciencias Básicas, UNCuyo 5500-Mendoza, Argentina.

Published: June 2012

The Ising model for finite systems, e.g. for clusters of different sizes and crystal lattices, was solved analytically by the mean field approach. The magnetization was calculated from the number of accessible microstates, using the gamma function and its derivatives, unlike the usual solution in the microcanonical which uses the Stirling approximation. We determined a scaling exponent of ∼1/3, which shows how the Curie temperature decreases with decreasing nanoparticle size. Moreover, the model predicts the behaviour of surface and core regions and it explains in simple terms several effects previously observed in experiments and Monte Carlo simulations of small magnetic systems.

Download full-text PDF

Source
http://dx.doi.org/10.1088/0953-8984/24/22/226004DOI Listing

Publication Analysis

Top Keywords

ising model
8
model finite
8
finite systems
8
analytical solution
4
solution field
4
field ising
4
systems ising
4
systems clusters
4
clusters sizes
4
sizes crystal
4

Similar Publications

Probing Critical States of Matter on a Digital Quantum Computer.

Phys Rev Lett

December 2024

Quantinuum, 303 S. Technology Court, Broomfield, Colorado 80021, USA.

Although quantum mechanics underpins the microscopic behavior of all materials, its effects are often obscured at the macroscopic level by thermal fluctuations. A notable exception is a zero-temperature phase transition, where scaling laws emerge entirely due to quantum correlations over a diverging length scale. The accurate description of such transitions is challenging for classical simulation methods of quantum systems, and is a natural application space for quantum simulation.

View Article and Find Full Text PDF

Phase Switch Driven by the Hidden Half-Ice, Half-Fire State in a Ferrimagnet.

Phys Rev Lett

December 2024

Brookhaven National Laboratory, Condensed Matter Physics and Materials Science Division, Upton, New York 11973, USA.

The notion of "half fire, half ice" was recently introduced to describe an exotic macroscopic ground-state degeneracy emerging in a ferrimagnet under the critical magnetic field, in which the "hot" spins are fully disordered on the sublattice with smaller magnetic moments and the "cold" spins are fully ordered on the sublattice with larger magnetic moments. Here, we further point out that this state has a twin named "half ice, half fire" in which the hot and cold spins switch positions. The new state is an excited state-thus hidden in the ground-state phase diagram-and is robust with respect to the interactions that destroy the half-fire, half-ice state.

View Article and Find Full Text PDF

Theory for Dissipative Time Crystals in Coupled Parametric Oscillators.

Phys Rev Lett

December 2024

University of Maryland, College Park, Joint Quantum Institute, Condensed Matter Theory Center and, Department of Physics, Maryland 20742-4111, USA.

Discrete time crystals are novel phases of matter that break the discrete time translational symmetry of a periodically driven system. In this Letter, we propose a classical system of weakly nonlinear parametrically driven coupled oscillators as a test bed to understand these phases. Such a system of parametric oscillators can be used to model period-doubling instabilities of Josephson junction arrays as well as semiconductor lasers.

View Article and Find Full Text PDF

ConspectusColloidal nanocrystals are an interesting platform for studying the surface chemistry of materials due to their high surface area/volume ratios, which results in a large fraction of surface atoms. As synthesized, the surfaces of many colloidal nanocrystals are capped by organic ligands that help control their size and shape. While these organic ligands are necessary in synthesis, it is often desirable to replace them with other molecules to enhance their properties or to integrate them into devices.

View Article and Find Full Text PDF

Magnetic semiconductors with spin-polarized non-metallic atoms are usually overlooked in applications because of their poor performances in magnetic moments and under critical temperatures. Herein, magnetic characteristics of 2D pentagon-based XN (X = B, Al, and Ga) are revealed based on first-principles calculations. It was proven that XN structures are antiferromagnetic semiconductors with bandgaps of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!