Guaranteed error bounds for structured complexity reduction of biochemical networks.

J Theor Biol

Life Sciences Interface Doctoral Training Centre, University of Oxford, Parks Road, Oxford OX1 3QU, UK.

Published: July 2012

Biological systems are typically modelled by nonlinear differential equations. In an effort to produce high fidelity representations of the underlying phenomena, these models are usually of high dimension and involve multiple temporal and spatial scales. However, this complexity and associated stiffness makes numerical simulation difficult and mathematical analysis impossible. In order to understand the functionality of these systems, these models are usually approximated by lower dimensional descriptions. These can be analysed and simulated more easily, and the reduced description also simplifies the parameter space of the model. This model reduction inevitably introduces error: the accuracy of the conclusions one makes about the system, based on reduced models, depends heavily on the error introduced in the reduction process. In this paper we propose a method to calculate the error associated with a model reduction algorithm, using ideas from dynamical systems. We first define an error system, whose output is the error between observables of the original and reduced systems. We then use convex optimisation techniques in order to find approximations to the error as a function of the initial conditions. In particular, we use the Sum of Squares decomposition of polynomials in order to compute an upper bound on the worst-case error between the original and reduced systems. We give biological examples to illustrate the theory, which leads us to a discussion about how these techniques can be used to model-reduce large, structured models typical of systems biology.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jtbi.2012.04.002DOI Listing

Publication Analysis

Top Keywords

model reduction
8
original reduced
8
reduced systems
8
error
7
systems
6
guaranteed error
4
error bounds
4
bounds structured
4
structured complexity
4
reduction
4

Similar Publications

As a representative agent of bicyclic antidepressants, venlafaxine (VEN) has become widely used worldwide and is frequently detected in surface waters with concentrations ranging from ng/L to µg/L. To evaluate the toxicological effects of such medications on aquatic species, studies on environmentally relevant concentrations are essential. Zebrafish were used as a model organism to assess growth and development in larvae and examine tissue accumulation, oxidative stress, and DNA methylation in adults.

View Article and Find Full Text PDF

Structural determinants of oxygen resistance and Zn-mediated stability of the [FeFe]-hydrogenase from .

Proc Natl Acad Sci U S A

January 2025

Laboratory for Protein Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan.

[FeFe]-hydrogenases catalyze the reversible two-electron reduction of two protons to molecular hydrogen. Although these enzymes are among the most efficient H-converting biocatalysts in nature, their catalytic cofactor (termed H-cluster) is irreversibly destroyed upon contact with dioxygen. The [FeFe]-hydrogenase CbA5H from has a unique mechanism to protect the H-cluster from oxygen-induced degradation.

View Article and Find Full Text PDF

Background: Vulvovaginal candidiasis (VVC), caused primarily by Candida albicans, is currently treated with either prescription or over-the-counter antifungal drugs, often with variable efficacy and relapses. New and improved therapeutic strategies, including drug-free treatment alternatives, are needed. Upon overgrowth or environmental triggers, C.

View Article and Find Full Text PDF

An Albumin-Photosensitizer Supramolecular Assembly with Type I ROS-Induced Multifaceted Tumor Cell Deaths for Photodynamic Immunotherapy.

Adv Sci (Weinh)

January 2025

Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, AIE Institute, South China University of Technology, Guangzhou, 510640, China.

Photodynamic therapy holds great potentials in cancer treatment, yet its effectiveness in hypoxic solid tumor is limited by the oxygen-dependence and insufficient oxidative potential of conventional type II reactive oxygen species (ROS). Herein, the study reports a supramolecular photosensitizer, BSA@TPE-BT-SCT NPs, through encapsulating aggregation-enhanced emission photosensitizer by bovine serum albumin (BSA) to significantly enhance ROS, particularly less oxygen-dependent type I ROS for photodynamic immunotherapy. The abundant type I ROS generated by BSA@TPE-BT-SCT NPs induce multiple forms of programmed cell death, including apoptosis, pyroptosis, and ferroptosis.

View Article and Find Full Text PDF

China's island tourism is still in the exploratory stage, and the carbon emissions due to island tourism development are still prominent. This study assesses the development of low-carbon tourism on Changdao Island in China. We constructed an evaluation model for low-carbon tourism on islands based on the driver-pressure-state-impact-response model, and the Entropy Weight Method-Analytical Hierarchy Process Method was combined with the weighting method to determine the index weights of ench evaluation-indicator.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!