Three-dimensional computed tomography analysis of airway volume changes after rapid maxillary expansion.

Am J Orthod Dentofacial Orthop

Department of Orthodontics and Oral Facial Genetics, School of Dentistry, Indiana University, Indianapolis, 46202, USA.

Published: May 2012

Introduction: In this retrospective study with 3-dimensional computed tomography, we evaluated airway volume, soft-palate area, and soft-tissue thickness changes before and after rapid maxillary expansion in adolescents. Another purpose was to determine whether rapid maxillary expansion caused changes in the palatal and mandibular planes and facial height.

Methods: The sample comprised 20 patients who were treated with rapid maxillary expansion. Spiral tomographs were taken before and 3 months after treatment. Reliability studies were performed, and then volumetric, soft-palate area, soft-tissue thickness, and cephalometric parameters were compared on the tomographs. Intraclass correlations were performed on the reliability measurements. Before and after rapid maxillary expansion measurements were compared by using Wilcoxon signed rank tests. Spearman correlation coefficients were used to evaluate the associations among the airway volume, soft-palate area, soft-tissue thickness, and cephalometric measurements. Significance was accepted at P ≤0.05 for all tests.

Results: Intraclass correlation coefficients were ≥0.90 for all reliability measures. Significant increases from before to after rapid maxillary expansion were found in nasal cavity and nasopharynx volumes, and for the measurements of MP-SN, S-PNS, N-ANS, ANS-Me, and N-Me. Significant positive correlations existed between changes in PP-SN and N-ANS, and ANS-Me and N-Me.

Conclusions: Rapid maxillary expansion causes significant increases in nasal cavity volume, nasopharynx volume, anterior and posterior facial heights, and palatal and mandibular planes.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ajodo.2011.12.017DOI Listing

Publication Analysis

Top Keywords

rapid maxillary
28
maxillary expansion
28
airway volume
12
soft-palate area
12
area soft-tissue
12
soft-tissue thickness
12
computed tomography
8
changes rapid
8
volume soft-palate
8
palatal mandibular
8

Similar Publications

This case report presents the multidisciplinary treatment of a male patient with a complex form of frontonasal dysplasia who presented with a 0 to 14 facial cleft, mild hypertelorism, absence of the nasal medial process of the nose, and frontonasal encephalocele. Cranial and plastic surgeries were performed to correct hypertelorism and improve the esthetic appearance of the frontonasal region. In the permanent dentition, the patient presented a Class II, division 1 malocclusion with severe maxillary constriction and bilateral posterior crossbite.

View Article and Find Full Text PDF

Background/objectives: Evidence suggests nasal airflow resistance reduces after rapid maxillary expansion (RME). However, the medium-term effects of RME on upper airway (UA) airflow characteristics when normal craniofacial development is considered are still unclear. This retrospective cohort study used computer fluid dynamics (CFD) to evaluate the medium-term changes in the UA airflow (pressure and velocity) after RME in two distinct age-based cohorts.

View Article and Find Full Text PDF

Stability of expansion effects following Miniscrew-assisted Rapid Palatal expansion: a prospective longitudinal cohort study.

Oral Maxillofac Surg

January 2025

Department of Orthodontics and Craniofacial Biology, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, The Netherlands.

Purpose: This study aimed to evaluate the dental and skeletal stability one year after Miniscrew-Assisted Rapid Palatal Expansion (MARPE) by using 3D image data.

Methods: Patients with transverse maxillary deficiency from the age of 16 onwards were enrolled consecutively in this prospective longitudinal cohort study. The MARPE appliance was digitally and individually designed and fabricated.

View Article and Find Full Text PDF

Transversal maxillary deficiency is a prevalent skeletal issue that can be addressed using various devices and methods, including rapid maxillary expansion (RME) and surgically assisted rapid maxillary expansion (SARME). These techniques involve the separation and regeneration of the midpalatal suture (MPS). Laser therapies, such as low-level laser therapy (LLLT) and photobiomodulation (PBM), have been proposed to improve biological wound or bone healing.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!