Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.7196/samj.5865 | DOI Listing |
Ther Adv Med Oncol
January 2025
Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Via Alessandro Manzoni 56, 20089 Rozzano, Italy.
Objectives: A combination of chemotherapy and radiotherapy is employed in the curative and postoperative treatment of locally advanced head and neck cancers (HNC). Integrated chemoradiation (CRT) treatments result in a non-negligible rate of severe toxic effects. Treatment-related death (TRD) is a crucial topic for physicians involved in the curative treatment of HNC.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, China.
Objective: Boron Neutron Capture Therapy (BNCT) is a novel precision radiotherapy. The key to BNCT application lies in the effective targeting and retention of the boron-10 (B) carrier. Among the various compounds studied in clinical settings, 4-boronophenylalanine (BPA) become the most prevalent one currently.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Leninskii Pr. 31, 119991 Moscow, Russia.
In this work, a series of boronated amidines based on the -dodecaborate anion and amino acids containing an amino group in the side chain of the general formula [BHNHC(NH(CH)CH(NH)COOH)CH], where n = 2, 3, 4, were synthesized. These derivatives contain conserved α-amino and α-carboxyl groups recognized by the binding centers of the large neutral amino acid transporter (LAT) system, which serves as a target for the clinically applied BNCT agent para-boronophenylalanine (BPA). The paper describes several approaches to synthesizing the target compounds, their acute toxicity studies, and tumor uptake studies in vivo in two tumor models.
View Article and Find Full Text PDFStrahlenther Onkol
January 2025
TUM School of Medicine and Health, Department of Radiation Oncology, Technische Universität München (TUM), Klinikum rechts der Isar, Munich, Germany.
Purpose: Increasing life expectancy and advances in cancer treatment will lead to more patients needing both radiation therapy (RT) and cardiac implantable electronic devices (CIEDs). CIEDs, including pacemakers and defibrillators, are essential for managing cardiac arrhythmias and heart failure. Telemetric monitoring of CIEDs checks battery status, lead function, settings, and diagnostic data, thereby identifying software deviations or damage.
View Article and Find Full Text PDFCells
January 2025
Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan.
Boron (B) neutron capture therapy (BNCT) is a novel non-invasive targeted cancer therapy based on the nuclear capture reaction B (n, alpha) Li that enables the death of cancer cells without damaging neighboring normal cells. However, the development of clinically approved boron drugs remains challenging. We have previously reported on self-forming nanoparticles for drug delivery consisting of a biodegradable polymer, namely, "AB-type" Lactosome nanoparticles (AB-Lac particles)- highly loaded with hydrophobic B compounds, namely -Carborane (Carb) or 1,2-dihexyl--Carborane (diC6-Carb), and the latter (diC6-Carb) especially showed the "molecular glue" effect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!