Peripheral sensory and motor nerves have different functions and different approaches to regeneration, especially their distinct ability to accurately reinervate terminal nerve pathways. To understand the molecular aspects underlying these differences, the proteomics technique by coupling isobaric tags for relative and absolute quantitation (iTRAQ) with online two-dimensional liquid chromatography tandem mass spectrometry (2D LC-MS/MS) was used to investigate the protein profile of sensory and motor nerve samples from rats. A total of 1472 proteins were identified in either sensory or motor nerve. Of them, 100 proteins showed differential expressions between both nerves, and some of them were validated by quantitative real time RT-PCR, Western blot analysis, and immunohistochemistry. In the light of functional categorization, the differentially expressed proteins in sensory and motor nerves, belonging to a broad range of classes, were related to a diverse array of biological functions, which included cell adhesion, cytoskeleton, neuronal plasticity, neurotrophic activity, calcium-binding, signal transduction, transport, enzyme catalysis, lipid metabolism, DNA-binding, synaptosome function, actin-binding, ATP-binding, extracellular matrix, and commitment to other lineages. The relatively higher expressed proteins in either sensory or motor nerve were tentatively discussed in combination with their specific molecular characteristics. It is anticipated that the database generated in this study will provide a solid foundation for further comprehensive investigation of functional differences between sensory and motor nerves, including the specificity of their regeneration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/pr300186t | DOI Listing |
Sci Rep
January 2025
Department of Psychology, Faculty of Psychology and Sport Science, Justus Liebig University, Otto-Behaghel-Str. 10F, 35394, Gießen, Germany.
Adapting movements to rapidly changing conditions is fundamental for interacting with our dynamic environment. This adaptability relies on internal models that predict and evaluate sensory outcomes to adjust motor commands. Even infants anticipate object properties for efficient grasping, suggesting the use of internal models.
View Article and Find Full Text PDFJ Sci Med Sport
January 2025
School of Exercise and Health, Shanghai University of Sport, China. Electronic address:
Objectives: This study aimed to evaluate the dose-response relationship between different exercise types and the alleviation of motor symptoms in Parkinson's Disease patients.
Design: A systematic review and network meta-analysis were conducted to compare the effects of 12 exercise types on motor symptoms in Parkinson's Disease patients using randomized controlled trials.
Methods: A systematic search was conducted across PubMed, Medline, Embase, PsycINFO, Cochrane Library, and Web of Science until September 10, 2024.
Neuroscience
January 2025
Departamento de Ciencias Médicas y de la Vida, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico; Laboratorio de Conducta Animal, Departamento de Psicología, Centro Universitario de la Ciénega, Universidad de Guadalajara, Ocotlán, Mexico.
Motor actions adapt dynamically to external changes through the brain's ability to predict sensory outcomes and adjust for discrepancies between anticipated and actual sensory inputs. In this study, we investigated how changes in target speed (v) and direction influenced visuomotor responses, focusing on gaze and manual joystick control during an interception task. Participants tracked a moving target with sinusoidal variations in v and directional changes, generating sensory prediction errors and requiring real-time adjustments.
View Article and Find Full Text PDFCNS Neurol Disord Drug Targets
January 2025
Biosciences and Bioengineering PhD Program, American University of Sharjah, UAE.
Neurological conditions resulting from severe spinal cord injuries, brain injuries, and other traumatic incidents often lead to the loss of essential bodily functions, including sensory and motor capabilities. Traditional prosthetic devices, though standard, have limitations in delivering the required dexterity and functionality. The advent of neuroprosthetics marks a paradigm shift, aiming to bridge the gap between prosthetic devices and the human nervous system.
View Article and Find Full Text PDFProc Biol Sci
January 2025
Graduate School of Integrated Science and Technology, Shizuoka University, Hamamatsu 432-8011, Japan.
The brain optimizes timing behaviour by acquiring a prior distribution of target timing and integrating it with sensory inputs. Real events have distinct temporal statistics (e.g.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!